In the Linux kernel, the following vulnerability has been resolved:
fbdev: sh7760fb: Fix a possible memory leak in sh7760fb_alloc_mem()
When information such as info->screen_base is not ready, calling
sh7760fb_free_mem() does not release memory correctly. Call
dma_free_coherent() instead.
In the Linux kernel, the following vulnerability has been resolved:
scsi: qedi: Fix a possible memory leak in qedi_alloc_and_init_sb()
Hook "qedi_ops->common->sb_init = qed_sb_init" does not release the DMA
memory sb_virt when it fails. Add dma_free_coherent() to free it. This
is the same way as qedr_alloc_mem_sb() and qede_alloc_mem_sb().
In the Linux kernel, the following vulnerability has been resolved:
scsi: qedf: Fix a possible memory leak in qedf_alloc_and_init_sb()
Hook "qed_ops->common->sb_init = qed_sb_init" does not release the DMA
memory sb_virt when it fails. Add dma_free_coherent() to free it. This
is the same way as qedr_alloc_mem_sb() and qede_alloc_mem_sb().
In the Linux kernel, the following vulnerability has been resolved:
rtc: check if __rtc_read_time was successful in rtc_timer_do_work()
If the __rtc_read_time call fails,, the struct rtc_time tm; may contain
uninitialized data, or an illegal date/time read from the RTC hardware.
When calling rtc_tm_to_ktime later, the result may be a very large value
(possibly KTIME_MAX). If there are periodic timers in rtc->timerqueue,
they will continually expire, may causing kernel softlockup.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix cpu stuck caused by printings during reset
During reset, cmd to destroy resources such as qp, cq, and mr may fail,
and error logs will be printed. When a large number of resources are
destroyed, there will be lots of printings, and it may lead to a cpu
stuck.
Delete some unnecessary printings and replace other printing functions
in these paths with the ratelimited version.
In the Linux kernel, the following vulnerability has been resolved:
mfd: intel_soc_pmic_bxtwc: Use IRQ domain for PMIC devices
While design wise the idea of converting the driver to use
the hierarchy of the IRQ chips is correct, the implementation
has (inherited) flaws. This was unveiled when platform_get_irq()
had started WARN() on IRQ 0 that is supposed to be a Linux
IRQ number (also known as vIRQ).
Rework the driver to respect IRQ domain when creating each MFD
device separately, as the domain is not the same for all of them.
In the Linux kernel, the following vulnerability has been resolved:
mfd: intel_soc_pmic_bxtwc: Use IRQ domain for TMU device
While design wise the idea of converting the driver to use
the hierarchy of the IRQ chips is correct, the implementation
has (inherited) flaws. This was unveiled when platform_get_irq()
had started WARN() on IRQ 0 that is supposed to be a Linux
IRQ number (also known as vIRQ).
Rework the driver to respect IRQ domain when creating each MFD
device separately, as the domain is not the same for all of them.
In the Linux kernel, the following vulnerability has been resolved:
media: atomisp: Add check for rgby_data memory allocation failure
In ia_css_3a_statistics_allocate(), there is no check on the allocation
result of the rgby_data memory. If rgby_data is not successfully
allocated, it may trigger the assert(host_stats->rgby_data) assertion in
ia_css_s3a_hmem_decode(). Adding a check to fix this potential issue.
In the Linux kernel, the following vulnerability has been resolved:
9p/xen: fix release of IRQ
Kernel logs indicate an IRQ was double-freed.
Pass correct device ID during IRQ release.
[Dominique: remove confusing variable reset to 0]
In the Linux kernel, the following vulnerability has been resolved:
media: wl128x: Fix atomicity violation in fmc_send_cmd()
Atomicity violation occurs when the fmc_send_cmd() function is executed
simultaneously with the modification of the fmdev->resp_skb value.
Consider a scenario where, after passing the validity check within the
function, a non-null fmdev->resp_skb variable is assigned a null value.
This results in an invalid fmdev->resp_skb variable passing the validity
check. As seen in the later part of the function, skb = fmdev->resp_skb;
when the invalid fmdev->resp_skb passes the check, a null pointer
dereference error may occur at line 478, evt_hdr = (void *)skb->data;
To address this issue, it is recommended to include the validity check of
fmdev->resp_skb within the locked section of the function. This
modification ensures that the value of fmdev->resp_skb does not change
during the validation process, thereby maintaining its validity.
This possible bug is found by an experimental static analysis tool
developed by our team. This tool analyzes the locking APIs
to extract function pairs that can be concurrently executed, and then
analyzes the instructions in the paired functions to identify possible
concurrency bugs including data races and atomicity violations.