In the Linux kernel, the following vulnerability has been resolved:
scsi: iscsi_tcp: Fix UAF during login when accessing the shost ipaddress
If during iscsi_sw_tcp_session_create() iscsi_tcp_r2tpool_alloc() fails,
userspace could be accessing the host's ipaddress attr. If we then free the
session via iscsi_session_teardown() while userspace is still accessing the
session we will hit a use after free bug.
Set the tcp_sw_host->session after we have completed session creation and
can no longer fail.
In the Linux kernel, the following vulnerability has been resolved:
Squashfs: fix handling and sanity checking of xattr_ids count
A Sysbot [1] corrupted filesystem exposes two flaws in the handling and
sanity checking of the xattr_ids count in the filesystem. Both of these
flaws cause computation overflow due to incorrect typing.
In the corrupted filesystem the xattr_ids value is 4294967071, which
stored in a signed variable becomes the negative number -225.
Flaw 1 (64-bit systems only):
The signed integer xattr_ids variable causes sign extension.
This causes variable overflow in the SQUASHFS_XATTR_*(A) macros. The
variable is first multiplied by sizeof(struct squashfs_xattr_id) where the
type of the sizeof operator is "unsigned long".
On a 64-bit system this is 64-bits in size, and causes the negative number
to be sign extended and widened to 64-bits and then become unsigned. This
produces the very large number 18446744073709548016 or 2^64 - 3600. This
number when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and
divided by SQUASHFS_METADATA_SIZE overflows and produces a length of 0
(stored in len).
Flaw 2 (32-bit systems only):
On a 32-bit system the integer variable is not widened by the unsigned
long type of the sizeof operator (32-bits), and the signedness of the
variable has no effect due it always being treated as unsigned.
The above corrupted xattr_ids value of 4294967071, when multiplied
overflows and produces the number 4294963696 or 2^32 - 3400. This number
when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and divided by
SQUASHFS_METADATA_SIZE overflows again and produces a length of 0.
The effect of the 0 length computation:
In conjunction with the corrupted xattr_ids field, the filesystem also has
a corrupted xattr_table_start value, where it matches the end of
filesystem value of 850.
This causes the following sanity check code to fail because the
incorrectly computed len of 0 matches the incorrect size of the table
reported by the superblock (0 bytes).
len = SQUASHFS_XATTR_BLOCK_BYTES(*xattr_ids);
indexes = SQUASHFS_XATTR_BLOCKS(*xattr_ids);
/*
* The computed size of the index table (len bytes) should exactly
* match the table start and end points
*/
start = table_start + sizeof(*id_table);
end = msblk->bytes_used;
if (len != (end - start))
return ERR_PTR(-EINVAL);
Changing the xattr_ids variable to be "usigned int" fixes the flaw on a
64-bit system. This relies on the fact the computation is widened by the
unsigned long type of the sizeof operator.
Casting the variable to u64 in the above macro fixes this flaw on a 32-bit
system.
It also means 64-bit systems do not implicitly rely on the type of the
sizeof operator to widen the computation.
[1] https://lore.kernel.org/lkml/000000000000cd44f005f1a0f17f@google.com/
In the Linux kernel, the following vulnerability has been resolved:
mm/khugepaged: fix ->anon_vma race
If an ->anon_vma is attached to the VMA, collapse_and_free_pmd() requires
it to be locked.
Page table traversal is allowed under any one of the mmap lock, the
anon_vma lock (if the VMA is associated with an anon_vma), and the
mapping lock (if the VMA is associated with a mapping); and so to be
able to remove page tables, we must hold all three of them.
retract_page_tables() bails out if an ->anon_vma is attached, but does
this check before holding the mmap lock (as the comment above the check
explains).
If we racily merged an existing ->anon_vma (shared with a child
process) from a neighboring VMA, subsequent rmap traversals on pages
belonging to the child will be able to see the page tables that we are
concurrently removing while assuming that nothing else can access them.
Repeat the ->anon_vma check once we hold the mmap lock to ensure that
there really is no concurrent page table access.
Hitting this bug causes a lockdep warning in collapse_and_free_pmd(),
in the line "lockdep_assert_held_write(&vma->anon_vma->root->rwsem)".
It can also lead to use-after-free access.
In the Linux kernel, the following vulnerability has been resolved:
kernel/irq/irqdomain.c: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
In the Linux kernel, the following vulnerability has been resolved:
mm/swapfile: add cond_resched() in get_swap_pages()
The softlockup still occurs in get_swap_pages() under memory pressure. 64
CPU cores, 64GB memory, and 28 zram devices, the disksize of each zram
device is 50MB with same priority as si. Use the stress-ng tool to
increase memory pressure, causing the system to oom frequently.
The plist_for_each_entry_safe() loops in get_swap_pages() could reach tens
of thousands of times to find available space (extreme case:
cond_resched() is not called in scan_swap_map_slots()). Let's add
cond_resched() into get_swap_pages() when failed to find available space
to avoid softlockup.
In the Linux kernel, the following vulnerability has been resolved:
reset: uniphier-glue: Fix possible null-ptr-deref
It will cause null-ptr-deref when resource_size(res) invoked,
if platform_get_resource() returns NULL.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: always report error in run_one_delayed_ref()
Currently we have a btrfs_debug() for run_one_delayed_ref() failure, but
if end users hit such problem, there will be no chance that
btrfs_debug() is enabled. This can lead to very little useful info for
debugging.
This patch will:
- Add extra info for error reporting
Including:
* logical bytenr
* num_bytes
* type
* action
* ref_mod
- Replace the btrfs_debug() with btrfs_err()
- Move the error reporting into run_one_delayed_ref()
This is to avoid use-after-free, the @node can be freed in the caller.
This error should only be triggered at most once.
As if run_one_delayed_ref() failed, we trigger the error message, then
causing the call chain to error out:
btrfs_run_delayed_refs()
`- btrfs_run_delayed_refs()
`- btrfs_run_delayed_refs_for_head()
`- run_one_delayed_ref()
And we will abort the current transaction in btrfs_run_delayed_refs().
If we have to run delayed refs for the abort transaction,
run_one_delayed_ref() will just cleanup the refs and do nothing, thus no
new error messages would be output.