Security Vulnerabilities
- CVEs Published In 2024
A vulnerability was found in 1000 Projects Bookstore Management System 1.0. It has been declared as critical. Affected by this vulnerability is an unknown functionality of the file /order_process.php. The manipulation of the argument fnm leads to sql injection. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in PHPGurukul Small CRM 1.0. It has been classified as critical. Affected is an unknown function of the file /admin/index.php. The manipulation of the argument email leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in PHPGurukul Small CRM 1.0 and classified as critical. This issue affects some unknown processing of the file /admin/quote-details.php. The manipulation of the argument id leads to sql injection. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability has been found in PHPGurukul Small CRM 1.0 and classified as critical. This vulnerability affects unknown code of the file /admin/edit-user.php. The manipulation of the argument id leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used.
A vulnerability, which was classified as problematic, was found in code-projects Online Car Rental System 1.0. This affects an unknown part of the file /index.php of the component GET Parameter Handler. The manipulation leads to cross site scripting. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used.
Apache NiFi 1.10.0 through 2.0.0 are missing fine-grained authorization checking for Parameter Contexts, referenced Controller Services, and referenced Parameter Providers, when creating new Process Groups.
Creating a new Process Group can include binding to a Parameter Context, but in cases where the Process Group did not reference any Parameter values, the framework did not check user authorization for the bound Parameter Context. Missing authorization for a bound Parameter Context enabled clients to download non-sensitive Parameter values after creating the Process Group.
Creating a new Process Group can also include referencing existing Controller Services or Parameter Providers. The framework did not check user authorization for referenced Controller Services or Parameter Providers, enabling clients to create Process Groups and use these components that were otherwise unauthorized.
This vulnerability is limited in scope to authenticated users authorized to create Process Groups. The scope is further limited to deployments with component-based authorization policies. Upgrading to Apache NiFi 2.1.0 is the recommended mitigation, which includes authorization checking for Parameter and Controller Service references on Process Group creation.
In the Linux kernel, the following vulnerability has been resolved:
EDAC/igen6: Avoid segmentation fault on module unload
The segmentation fault happens because:
During modprobe:
1. In igen6_probe(), igen6_pvt will be allocated with kzalloc()
2. In igen6_register_mci(), mci->pvt_info will point to
&igen6_pvt->imc[mc]
During rmmod:
1. In mci_release() in edac_mc.c, it will kfree(mci->pvt_info)
2. In igen6_remove(), it will kfree(igen6_pvt);
Fix this issue by setting mci->pvt_info to NULL to avoid the double
kfree.
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix soft lockups in fib6_select_path under high next hop churn
Soft lockups have been observed on a cluster of Linux-based edge routers
located in a highly dynamic environment. Using the `bird` service, these
routers continuously update BGP-advertised routes due to frequently
changing nexthop destinations, while also managing significant IPv6
traffic. The lockups occur during the traversal of the multipath
circular linked-list in the `fib6_select_path` function, particularly
while iterating through the siblings in the list. The issue typically
arises when the nodes of the linked list are unexpectedly deleted
concurrently on a different core—indicated by their 'next' and
'previous' elements pointing back to the node itself and their reference
count dropping to zero. This results in an infinite loop, leading to a
soft lockup that triggers a system panic via the watchdog timer.
Apply RCU primitives in the problematic code sections to resolve the
issue. Where necessary, update the references to fib6_siblings to
annotate or use the RCU APIs.
Include a test script that reproduces the issue. The script
periodically updates the routing table while generating a heavy load
of outgoing IPv6 traffic through multiple iperf3 clients. It
consistently induces infinite soft lockups within a couple of minutes.
Kernel log:
0 [ffffbd13003e8d30] machine_kexec at ffffffff8ceaf3eb
1 [ffffbd13003e8d90] __crash_kexec at ffffffff8d0120e3
2 [ffffbd13003e8e58] panic at ffffffff8cef65d4
3 [ffffbd13003e8ed8] watchdog_timer_fn at ffffffff8d05cb03
4 [ffffbd13003e8f08] __hrtimer_run_queues at ffffffff8cfec62f
5 [ffffbd13003e8f70] hrtimer_interrupt at ffffffff8cfed756
6 [ffffbd13003e8fd0] __sysvec_apic_timer_interrupt at ffffffff8cea01af
7 [ffffbd13003e8ff0] sysvec_apic_timer_interrupt at ffffffff8df1b83d
-- <IRQ stack> --
8 [ffffbd13003d3708] asm_sysvec_apic_timer_interrupt at ffffffff8e000ecb
[exception RIP: fib6_select_path+299]
RIP: ffffffff8ddafe7b RSP: ffffbd13003d37b8 RFLAGS: 00000287
RAX: ffff975850b43600 RBX: ffff975850b40200 RCX: 0000000000000000
RDX: 000000003fffffff RSI: 0000000051d383e4 RDI: ffff975850b43618
RBP: ffffbd13003d3800 R8: 0000000000000000 R9: ffff975850b40200
R10: 0000000000000000 R11: 0000000000000000 R12: ffffbd13003d3830
R13: ffff975850b436a8 R14: ffff975850b43600 R15: 0000000000000007
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
9 [ffffbd13003d3808] ip6_pol_route at ffffffff8ddb030c
10 [ffffbd13003d3888] ip6_pol_route_input at ffffffff8ddb068c
11 [ffffbd13003d3898] fib6_rule_lookup at ffffffff8ddf02b5
12 [ffffbd13003d3928] ip6_route_input at ffffffff8ddb0f47
13 [ffffbd13003d3a18] ip6_rcv_finish_core.constprop.0 at ffffffff8dd950d0
14 [ffffbd13003d3a30] ip6_list_rcv_finish.constprop.0 at ffffffff8dd96274
15 [ffffbd13003d3a98] ip6_sublist_rcv at ffffffff8dd96474
16 [ffffbd13003d3af8] ipv6_list_rcv at ffffffff8dd96615
17 [ffffbd13003d3b60] __netif_receive_skb_list_core at ffffffff8dc16fec
18 [ffffbd13003d3be0] netif_receive_skb_list_internal at ffffffff8dc176b3
19 [ffffbd13003d3c50] napi_gro_receive at ffffffff8dc565b9
20 [ffffbd13003d3c80] ice_receive_skb at ffffffffc087e4f5 [ice]
21 [ffffbd13003d3c90] ice_clean_rx_irq at ffffffffc0881b80 [ice]
22 [ffffbd13003d3d20] ice_napi_poll at ffffffffc088232f [ice]
23 [ffffbd13003d3d80] __napi_poll at ffffffff8dc18000
24 [ffffbd13003d3db8] net_rx_action at ffffffff8dc18581
25 [ffffbd13003d3e40] __do_softirq at ffffffff8df352e9
26 [ffffbd13003d3eb0] run_ksoftirqd at ffffffff8ceffe47
27 [ffffbd13003d3ec0] smpboot_thread_fn at ffffffff8cf36a30
28 [ffffbd13003d3ee8] kthread at ffffffff8cf2b39f
29 [ffffbd13003d3f28] ret_from_fork at ffffffff8ce5fa64
30 [ffffbd13003d3f50] ret_from_fork_asm at ffffffff8ce03cbb
In the Linux kernel, the following vulnerability has been resolved:
9p/xen: fix release of IRQ
Kernel logs indicate an IRQ was double-freed.
Pass correct device ID during IRQ release.
[Dominique: remove confusing variable reset to 0]
In the Linux kernel, the following vulnerability has been resolved:
bpf: Mark raw_tp arguments with PTR_MAYBE_NULL
Arguments to a raw tracepoint are tagged as trusted, which carries the
semantics that the pointer will be non-NULL. However, in certain cases,
a raw tracepoint argument may end up being NULL. More context about this
issue is available in [0].
Thus, there is a discrepancy between the reality, that raw_tp arguments
can actually be NULL, and the verifier's knowledge, that they are never
NULL, causing explicit NULL checks to be deleted, and accesses to such
pointers potentially crashing the kernel.
To fix this, mark raw_tp arguments as PTR_MAYBE_NULL, and then special
case the dereference and pointer arithmetic to permit it, and allow
passing them into helpers/kfuncs; these exceptions are made for raw_tp
programs only. Ensure that we don't do this when ref_obj_id > 0, as in
that case this is an acquired object and doesn't need such adjustment.
The reason we do mask_raw_tp_trusted_reg logic is because other will
recheck in places whether the register is a trusted_reg, and then
consider our register as untrusted when detecting the presence of the
PTR_MAYBE_NULL flag.
To allow safe dereference, we enable PROBE_MEM marking when we see loads
into trusted pointers with PTR_MAYBE_NULL.
While trusted raw_tp arguments can also be passed into helpers or kfuncs
where such broken assumption may cause issues, a future patch set will
tackle their case separately, as PTR_TO_BTF_ID (without PTR_TRUSTED) can
already be passed into helpers and causes similar problems. Thus, they
are left alone for now.
It is possible that these checks also permit passing non-raw_tp args
that are trusted PTR_TO_BTF_ID with null marking. In such a case,
allowing dereference when pointer is NULL expands allowed behavior, so
won't regress existing programs, and the case of passing these into
helpers is the same as above and will be dealt with later.
Also update the failure case in tp_btf_nullable selftest to capture the
new behavior, as the verifier will no longer cause an error when
directly dereference a raw tracepoint argument marked as __nullable.
[0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb