In the Linux kernel, the following vulnerability has been resolved:
objtool, nvmet: Fix out-of-bounds stack access in nvmet_ctrl_state_show()
The csts_state_names[] array only has six sparse entries, but the
iteration code in nvmet_ctrl_state_show() iterates seven, resulting in a
potential out-of-bounds stack read. Fix that.
Fixes the following warning with an UBSAN kernel:
vmlinux.o: warning: objtool: .text.nvmet_ctrl_state_show: unexpected end of section
In the Linux kernel, the following vulnerability has been resolved:
objtool, spi: amd: Fix out-of-bounds stack access in amd_set_spi_freq()
If speed_hz < AMD_SPI_MIN_HZ, amd_set_spi_freq() iterates over the
entire amd_spi_freq array without breaking out early, causing 'i' to go
beyond the array bounds.
Fix that by stopping the loop when it gets to the last entry, so the low
speed_hz value gets clamped up to AMD_SPI_MIN_HZ.
Fixes the following warning with an UBSAN kernel:
drivers/spi/spi-amd.o: error: objtool: amd_set_spi_freq() falls through to next function amd_spi_set_opcode()
In the Linux kernel, the following vulnerability has been resolved:
iio: light: Add check for array bounds in veml6075_read_int_time_ms
The array contains only 5 elements, but the index calculated by
veml6075_read_int_time_index can range from 0 to 7,
which could lead to out-of-bounds access. The check prevents this issue.
Coverity Issue
CID 1574309: (#1 of 1): Out-of-bounds read (OVERRUN)
overrun-local: Overrunning array veml6075_it_ms of 5 4-byte
elements at element index 7 (byte offset 31) using
index int_index (which evaluates to 7)
This is hardening against potentially broken hardware. Good to have
but not necessary to backport.
In the Linux kernel, the following vulnerability has been resolved:
x86/resctrl: Fix allocation of cleanest CLOSID on platforms with no monitors
Commit
6eac36bb9eb0 ("x86/resctrl: Allocate the cleanest CLOSID by searching closid_num_dirty_rmid")
added logic that causes resctrl to search for the CLOSID with the fewest dirty
cache lines when creating a new control group, if requested by the arch code.
This depends on the values read from the llc_occupancy counters. The logic is
applicable to architectures where the CLOSID effectively forms part of the
monitoring identifier and so do not allow complete freedom to choose an unused
monitoring identifier for a given CLOSID.
This support missed that some platforms may not have these counters. This
causes a NULL pointer dereference when creating a new control group as the
array was not allocated by dom_data_init().
As this feature isn't necessary on platforms that don't have cache occupancy
monitors, add this to the check that occurs when a new control group is
allocated.
In the Linux kernel, the following vulnerability has been resolved:
remoteproc: core: Clear table_sz when rproc_shutdown
There is case as below could trigger kernel dump:
Use U-Boot to start remote processor(rproc) with resource table
published to a fixed address by rproc. After Kernel boots up,
stop the rproc, load a new firmware which doesn't have resource table
,and start rproc.
When starting rproc with a firmware not have resource table,
`memcpy(loaded_table, rproc->cached_table, rproc->table_sz)` will
trigger dump, because rproc->cache_table is set to NULL during the last
stop operation, but rproc->table_sz is still valid.
This issue is found on i.MX8MP and i.MX9.
Dump as below:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
Mem abort info:
ESR = 0x0000000096000004
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
FSC = 0x04: level 0 translation fault
Data abort info:
ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000
CM = 0, WnR = 0, TnD = 0, TagAccess = 0
GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
user pgtable: 4k pages, 48-bit VAs, pgdp=000000010af63000
[0000000000000000] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP
Modules linked in:
CPU: 2 UID: 0 PID: 1060 Comm: sh Not tainted 6.14.0-rc7-next-20250317-dirty #38
Hardware name: NXP i.MX8MPlus EVK board (DT)
pstate: a0000005 (NzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __pi_memcpy_generic+0x110/0x22c
lr : rproc_start+0x88/0x1e0
Call trace:
__pi_memcpy_generic+0x110/0x22c (P)
rproc_boot+0x198/0x57c
state_store+0x40/0x104
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x7c/0x94
kernfs_fop_write_iter+0x120/0x1cc
vfs_write+0x240/0x378
ksys_write+0x70/0x108
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x10c
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xcc
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
Clear rproc->table_sz to address the issue.
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix OOB read when checking dotdot dir
Mounting a corrupted filesystem with directory which contains '.' dir
entry with rec_len == block size results in out-of-bounds read (later
on, when the corrupted directory is removed).
ext4_empty_dir() assumes every ext4 directory contains at least '.'
and '..' as directory entries in the first data block. It first loads
the '.' dir entry, performs sanity checks by calling ext4_check_dir_entry()
and then uses its rec_len member to compute the location of '..' dir
entry (in ext4_next_entry). It assumes the '..' dir entry fits into the
same data block.
If the rec_len of '.' is precisely one block (4KB), it slips through the
sanity checks (it is considered the last directory entry in the data
block) and leaves "struct ext4_dir_entry_2 *de" point exactly past the
memory slot allocated to the data block. The following call to
ext4_check_dir_entry() on new value of de then dereferences this pointer
which results in out-of-bounds mem access.
Fix this by extending __ext4_check_dir_entry() to check for '.' dir
entries that reach the end of data block. Make sure to ignore the phony
dir entries for checksum (by checking name_len for non-zero).
Note: This is reported by KASAN as use-after-free in case another
structure was recently freed from the slot past the bound, but it is
really an OOB read.
This issue was found by syzkaller tool.
Call Trace:
[ 38.594108] BUG: KASAN: slab-use-after-free in __ext4_check_dir_entry+0x67e/0x710
[ 38.594649] Read of size 2 at addr ffff88802b41a004 by task syz-executor/5375
[ 38.595158]
[ 38.595288] CPU: 0 UID: 0 PID: 5375 Comm: syz-executor Not tainted 6.14.0-rc7 #1
[ 38.595298] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.3-0-ga6ed6b701f0a-prebuilt.qemu.org 04/01/2014
[ 38.595304] Call Trace:
[ 38.595308] <TASK>
[ 38.595311] dump_stack_lvl+0xa7/0xd0
[ 38.595325] print_address_description.constprop.0+0x2c/0x3f0
[ 38.595339] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595349] print_report+0xaa/0x250
[ 38.595359] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595368] ? kasan_addr_to_slab+0x9/0x90
[ 38.595378] kasan_report+0xab/0xe0
[ 38.595389] ? __ext4_check_dir_entry+0x67e/0x710
[ 38.595400] __ext4_check_dir_entry+0x67e/0x710
[ 38.595410] ext4_empty_dir+0x465/0x990
[ 38.595421] ? __pfx_ext4_empty_dir+0x10/0x10
[ 38.595432] ext4_rmdir.part.0+0x29a/0xd10
[ 38.595441] ? __dquot_initialize+0x2a7/0xbf0
[ 38.595455] ? __pfx_ext4_rmdir.part.0+0x10/0x10
[ 38.595464] ? __pfx___dquot_initialize+0x10/0x10
[ 38.595478] ? down_write+0xdb/0x140
[ 38.595487] ? __pfx_down_write+0x10/0x10
[ 38.595497] ext4_rmdir+0xee/0x140
[ 38.595506] vfs_rmdir+0x209/0x670
[ 38.595517] ? lookup_one_qstr_excl+0x3b/0x190
[ 38.595529] do_rmdir+0x363/0x3c0
[ 38.595537] ? __pfx_do_rmdir+0x10/0x10
[ 38.595544] ? strncpy_from_user+0x1ff/0x2e0
[ 38.595561] __x64_sys_unlinkat+0xf0/0x130
[ 38.595570] do_syscall_64+0x5b/0x180
[ 38.595583] entry_SYSCALL_64_after_hwframe+0x76/0x7e
In the Linux kernel, the following vulnerability has been resolved:
sfc: fix NULL dereferences in ef100_process_design_param()
Since cited commit, ef100_probe_main() and hence also
ef100_check_design_params() run before efx->net_dev is created;
consequently, we cannot netif_set_tso_max_size() or _segs() at this
point.
Move those netif calls to ef100_probe_netdev(), and also replace
netif_err within the design params code with pci_err.
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: BPF: Fix off-by-one error in build_prologue()
Vincent reported that running BPF progs with tailcalls on LoongArch
causes kernel hard lockup. Debugging the issues shows that the JITed
image missing a jirl instruction at the end of the epilogue.
There are two passes in JIT compiling, the first pass set the flags and
the second pass generates JIT code based on those flags. With BPF progs
mixing bpf2bpf and tailcalls, build_prologue() generates N insns in the
first pass and then generates N+1 insns in the second pass. This makes
epilogue_offset off by one and we will jump to some unexpected insn and
cause lockup. Fix this by inserting a nop insn.
A vulnerability classified as critical was found in SourceCodester Web-based Pharmacy Product Management System 1.0. Affected by this vulnerability is an unknown functionality of the file /add-product.php. The manipulation of the argument Avatar leads to unrestricted upload. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.