In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: avoid buffer overflow in WID string configuration
Fix the following copy overflow warning identified by Smatch checker.
drivers/net/wireless/microchip/wilc1000/wlan_cfg.c:184 wilc_wlan_parse_response_frame()
error: '__memcpy()' 'cfg->s[i]->str' copy overflow (512 vs 65537)
This patch introduces size check before accessing the memory buffer.
The checks are base on the WID type of received data from the firmware.
For WID string configuration, the size limit is determined by individual
element size in 'struct wilc_cfg_str_vals' that is maintained in 'len' field
of 'struct wilc_cfg_str'.
In the Linux kernel, the following vulnerability has been resolved:
cgroup: split cgroup_destroy_wq into 3 workqueues
A hung task can occur during [1] LTP cgroup testing when repeatedly
mounting/unmounting perf_event and net_prio controllers with
systemd.unified_cgroup_hierarchy=1. The hang manifests in
cgroup_lock_and_drain_offline() during root destruction.
Related case:
cgroup_fj_function_perf_event cgroup_fj_function.sh perf_event
cgroup_fj_function_net_prio cgroup_fj_function.sh net_prio
Call Trace:
cgroup_lock_and_drain_offline+0x14c/0x1e8
cgroup_destroy_root+0x3c/0x2c0
css_free_rwork_fn+0x248/0x338
process_one_work+0x16c/0x3b8
worker_thread+0x22c/0x3b0
kthread+0xec/0x100
ret_from_fork+0x10/0x20
Root Cause:
CPU0 CPU1
mount perf_event umount net_prio
cgroup1_get_tree cgroup_kill_sb
rebind_subsystems // root destruction enqueues
// cgroup_destroy_wq
// kill all perf_event css
// one perf_event css A is dying
// css A offline enqueues cgroup_destroy_wq
// root destruction will be executed first
css_free_rwork_fn
cgroup_destroy_root
cgroup_lock_and_drain_offline
// some perf descendants are dying
// cgroup_destroy_wq max_active = 1
// waiting for css A to die
Problem scenario:
1. CPU0 mounts perf_event (rebind_subsystems)
2. CPU1 unmounts net_prio (cgroup_kill_sb), queuing root destruction work
3. A dying perf_event CSS gets queued for offline after root destruction
4. Root destruction waits for offline completion, but offline work is
blocked behind root destruction in cgroup_destroy_wq (max_active=1)
Solution:
Split cgroup_destroy_wq into three dedicated workqueues:
cgroup_offline_wq – Handles CSS offline operations
cgroup_release_wq – Manages resource release
cgroup_free_wq – Performs final memory deallocation
This separation eliminates blocking in the CSS free path while waiting for
offline operations to complete.
[1] https://github.com/linux-test-project/ltp/blob/master/runtest/controllers
In the Linux kernel, the following vulnerability has been resolved:
cnic: Fix use-after-free bugs in cnic_delete_task
The original code uses cancel_delayed_work() in cnic_cm_stop_bnx2x_hw(),
which does not guarantee that the delayed work item 'delete_task' has
fully completed if it was already running. Additionally, the delayed work
item is cyclic, the flush_workqueue() in cnic_cm_stop_bnx2x_hw() only
blocks and waits for work items that were already queued to the
workqueue prior to its invocation. Any work items submitted after
flush_workqueue() is called are not included in the set of tasks that the
flush operation awaits. This means that after the cyclic work items have
finished executing, a delayed work item may still exist in the workqueue.
This leads to use-after-free scenarios where the cnic_dev is deallocated
by cnic_free_dev(), while delete_task remains active and attempt to
dereference cnic_dev in cnic_delete_task().
A typical race condition is illustrated below:
CPU 0 (cleanup) | CPU 1 (delayed work callback)
cnic_netdev_event() |
cnic_stop_hw() | cnic_delete_task()
cnic_cm_stop_bnx2x_hw() | ...
cancel_delayed_work() | /* the queue_delayed_work()
flush_workqueue() | executes after flush_workqueue()*/
| queue_delayed_work()
cnic_free_dev(dev)//free | cnic_delete_task() //new instance
| dev = cp->dev; //use
Replace cancel_delayed_work() with cancel_delayed_work_sync() to ensure
that the cyclic delayed work item is properly canceled and that any
ongoing execution of the work item completes before the cnic_dev is
deallocated. Furthermore, since cancel_delayed_work_sync() uses
__flush_work(work, true) to synchronously wait for any currently
executing instance of the work item to finish, the flush_workqueue()
becomes redundant and should be removed.
This bug was identified through static analysis. To reproduce the issue
and validate the fix, I simulated the cnic PCI device in QEMU and
introduced intentional delays — such as inserting calls to ssleep()
within the cnic_delete_task() function — to increase the likelihood
of triggering the bug.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: let recv_done verify data_offset, data_length and remaining_data_length
This is inspired by the related server fixes.
In the Linux kernel, the following vulnerability has been resolved:
net: rfkill: gpio: Fix crash due to dereferencering uninitialized pointer
Since commit 7d5e9737efda ("net: rfkill: gpio: get the name and type from
device property") rfkill_find_type() gets called with the possibly
uninitialized "const char *type_name;" local variable.
On x86 systems when rfkill-gpio binds to a "BCM4752" or "LNV4752"
acpi_device, the rfkill->type is set based on the ACPI acpi_device_id:
rfkill->type = (unsigned)id->driver_data;
and there is no "type" property so device_property_read_string() will fail
and leave type_name uninitialized, leading to a potential crash.
rfkill_find_type() does accept a NULL pointer, fix the potential crash
by initializing type_name to NULL.
Note likely sofar this has not been caught because:
1. Not many x86 machines actually have a "BCM4752"/"LNV4752" acpi_device
2. The stack happened to contain NULL where type_name is stored
In the Linux kernel, the following vulnerability has been resolved:
dm-stripe: fix a possible integer overflow
There's a possible integer overflow in stripe_io_hints if we have too
large chunk size. Test if the overflow happened, and if it did, don't set
limits->io_min and limits->io_opt;
In the Linux kernel, the following vulnerability has been resolved:
crypto: af_alg - Set merge to zero early in af_alg_sendmsg
If an error causes af_alg_sendmsg to abort, ctx->merge may contain
a garbage value from the previous loop. This may then trigger a
crash on the next entry into af_alg_sendmsg when it attempts to do
a merge that can't be done.
Fix this by setting ctx->merge to zero near the start of the loop.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: let smbd_destroy() call disable_work_sync(&info->post_send_credits_work)
In smbd_destroy() we may destroy the memory so we better
wait until post_send_credits_work is no longer pending
and will never be started again.
I actually just hit the case using rxe:
WARNING: CPU: 0 PID: 138 at drivers/infiniband/sw/rxe/rxe_verbs.c:1032 rxe_post_recv+0x1ee/0x480 [rdma_rxe]
...
[ 5305.686979] [ T138] smbd_post_recv+0x445/0xc10 [cifs]
[ 5305.687135] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687149] [ T138] ? __kasan_check_write+0x14/0x30
[ 5305.687185] [ T138] ? __pfx_smbd_post_recv+0x10/0x10 [cifs]
[ 5305.687329] [ T138] ? __pfx__raw_spin_lock_irqsave+0x10/0x10
[ 5305.687356] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687368] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687378] [ T138] ? _raw_spin_unlock_irqrestore+0x11/0x60
[ 5305.687389] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687399] [ T138] ? get_receive_buffer+0x168/0x210 [cifs]
[ 5305.687555] [ T138] smbd_post_send_credits+0x382/0x4b0 [cifs]
[ 5305.687701] [ T138] ? __pfx_smbd_post_send_credits+0x10/0x10 [cifs]
[ 5305.687855] [ T138] ? __pfx___schedule+0x10/0x10
[ 5305.687865] [ T138] ? __pfx__raw_spin_lock_irq+0x10/0x10
[ 5305.687875] [ T138] ? queue_delayed_work_on+0x8e/0xa0
[ 5305.687889] [ T138] process_one_work+0x629/0xf80
[ 5305.687908] [ T138] ? srso_alias_return_thunk+0x5/0xfbef5
[ 5305.687917] [ T138] ? __kasan_check_write+0x14/0x30
[ 5305.687933] [ T138] worker_thread+0x87f/0x1570
...
It means rxe_post_recv was called after rdma_destroy_qp().
This happened because put_receive_buffer() was triggered
by ib_drain_qp() and called:
queue_work(info->workqueue, &info->post_send_credits_work);
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix smbdirect_recv_io leak in smbd_negotiate() error path
During tests of another unrelated patch I was able to trigger this
error: Objects remaining on __kmem_cache_shutdown()
In the Linux kernel, the following vulnerability has been resolved:
RDMA/cma: Allow UD qp_type to join multicast only
As for multicast:
- The SIDR is the only mode that makes sense;
- Besides PS_UDP, other port spaces like PS_IB is also allowed, as it is
UD compatible. In this case qkey also needs to be set [1].
This patch allows only UD qp_type to join multicast, and set qkey to
default if it's not set, to fix an uninit-value error: the ib->rec.qkey
field is accessed without being initialized.
=====================================================
BUG: KMSAN: uninit-value in cma_set_qkey drivers/infiniband/core/cma.c:510 [inline]
BUG: KMSAN: uninit-value in cma_make_mc_event+0xb73/0xe00 drivers/infiniband/core/cma.c:4570
cma_set_qkey drivers/infiniband/core/cma.c:510 [inline]
cma_make_mc_event+0xb73/0xe00 drivers/infiniband/core/cma.c:4570
cma_iboe_join_multicast drivers/infiniband/core/cma.c:4782 [inline]
rdma_join_multicast+0x2b83/0x30a0 drivers/infiniband/core/cma.c:4814
ucma_process_join+0xa76/0xf60 drivers/infiniband/core/ucma.c:1479
ucma_join_multicast+0x1e3/0x250 drivers/infiniband/core/ucma.c:1546
ucma_write+0x639/0x6d0 drivers/infiniband/core/ucma.c:1732
vfs_write+0x8ce/0x2030 fs/read_write.c:588
ksys_write+0x28c/0x520 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__ia32_sys_write+0xdb/0x120 fs/read_write.c:652
do_syscall_32_irqs_on arch/x86/entry/common.c:114 [inline]
__do_fast_syscall_32+0x96/0xf0 arch/x86/entry/common.c:180
do_fast_syscall_32+0x34/0x70 arch/x86/entry/common.c:205
do_SYSENTER_32+0x1b/0x20 arch/x86/entry/common.c:248
entry_SYSENTER_compat_after_hwframe+0x4d/0x5c
Local variable ib.i created at:
cma_iboe_join_multicast drivers/infiniband/core/cma.c:4737 [inline]
rdma_join_multicast+0x586/0x30a0 drivers/infiniband/core/cma.c:4814
ucma_process_join+0xa76/0xf60 drivers/infiniband/core/ucma.c:1479
CPU: 0 PID: 29874 Comm: syz-executor.3 Not tainted 5.16.0-rc3-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
=====================================================
[1] https://lore.kernel.org/linux-rdma/20220117183832.GD84788@nvidia.com/