In the Linux kernel, the following vulnerability has been resolved:
rcutorture: Fix rcutorture_one_extend_check() splat in RT kernels
For built with CONFIG_PREEMPT_RT=y kernels, running rcutorture
tests resulted in the following splat:
[ 68.797425] rcutorture_one_extend_check during change: Current 0x1 To add 0x1 To remove 0x0 preempt_count() 0x0
[ 68.797533] WARNING: CPU: 2 PID: 512 at kernel/rcu/rcutorture.c:1993 rcutorture_one_extend_check+0x419/0x560 [rcutorture]
[ 68.797601] Call Trace:
[ 68.797602] <TASK>
[ 68.797619] ? lockdep_softirqs_off+0xa5/0x160
[ 68.797631] rcutorture_one_extend+0x18e/0xcc0 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797646] ? local_clock+0x19/0x40
[ 68.797659] rcu_torture_one_read+0xf0/0x280 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797678] ? __pfx_rcu_torture_one_read+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797804] ? __pfx_rcu_torture_timer+0x10/0x10 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797815] rcu-torture: rcu_torture_reader task started
[ 68.797824] rcu-torture: Creating rcu_torture_reader task
[ 68.797824] rcu_torture_reader+0x238/0x580 [rcutorture 2466dbd2ff34dbaa36049cb323a80c3306ac997c]
[ 68.797836] ? kvm_sched_clock_read+0x15/0x30
Disable BH does not change the SOFTIRQ corresponding bits in
preempt_count() for RT kernels, this commit therefore use
softirq_count() to check the if BH is disabled.
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Validate i_depth for exhash directories
A fuzzer test introduced corruption that ends up with a depth of 0 in
dir_e_read(), causing an undefined shift by 32 at:
index = hash >> (32 - dip->i_depth);
As calculated in an open-coded way in dir_make_exhash(), the minimum
depth for an exhash directory is ilog2(sdp->sd_hash_ptrs) and 0 is
invalid as sdp->sd_hash_ptrs is fixed as sdp->bsize / 16 at mount time.
So we can avoid the undefined behaviour by checking for depth values
lower than the minimum in gfs2_dinode_in(). Values greater than the
maximum are already being checked for there.
Also switch the calculation in dir_make_exhash() to use ilog2() to
clarify how the depth is calculated.
Tested with the syzkaller repro.c and xfstests '-g quick'.
In the Linux kernel, the following vulnerability has been resolved:
rcu/nocb: Fix possible invalid rdp's->nocb_cb_kthread pointer access
In the preparation stage of CPU online, if the corresponding
the rdp's->nocb_cb_kthread does not exist, will be created,
there is a situation where the rdp's rcuop kthreads creation fails,
and then de-offload this CPU's rdp, does not assign this CPU's
rdp->nocb_cb_kthread pointer, but this rdp's->nocb_gp_rdp and
rdp's->rdp_gp->nocb_gp_kthread is still valid.
This will cause the subsequent re-offload operation of this offline
CPU, which will pass the conditional check and the kthread_unpark()
will access invalid rdp's->nocb_cb_kthread pointer.
This commit therefore use rdp's->nocb_gp_kthread instead of
rdp_gp's->nocb_gp_kthread for safety check.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: fix null pointer access
Writing a string without delimiters (' ', '\n', '\0') to the under
gpu_od/fan_ctrl sysfs or pp_power_profile_mode for the CUSTOM profile
will result in a null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
loop: Avoid updating block size under exclusive owner
Syzbot came up with a reproducer where a loop device block size is
changed underneath a mounted filesystem. This causes a mismatch between
the block device block size and the block size stored in the superblock
causing confusion in various places such as fs/buffer.c. The particular
issue triggered by syzbot was a warning in __getblk_slow() due to
requested buffer size not matching block device block size.
Fix the problem by getting exclusive hold of the loop device to change
its block size. This fails if somebody (such as filesystem) has already
an exclusive ownership of the block device and thus prevents modifying
the loop device under some exclusive owner which doesn't expect it.
In the Linux kernel, the following vulnerability has been resolved:
iio: common: st_sensors: Fix use of uninitialize device structs
Throughout the various probe functions &indio_dev->dev is used before it
is initialized. This caused a kernel panic in st_sensors_power_enable()
when the call to devm_regulator_bulk_get_enable() fails and then calls
dev_err_probe() with the uninitialized device.
This seems to only cause a panic with dev_err_probe(), dev_err(),
dev_warn() and dev_info() don't seem to cause a panic, but are fixed
as well.
The issue is reported and traced here: [1]
In the Linux kernel, the following vulnerability has been resolved:
drm/gem: Acquire references on GEM handles for framebuffers
A GEM handle can be released while the GEM buffer object is attached
to a DRM framebuffer. This leads to the release of the dma-buf backing
the buffer object, if any. [1] Trying to use the framebuffer in further
mode-setting operations leads to a segmentation fault. Most easily
happens with driver that use shadow planes for vmap-ing the dma-buf
during a page flip. An example is shown below.
[ 156.791968] ------------[ cut here ]------------
[ 156.796830] WARNING: CPU: 2 PID: 2255 at drivers/dma-buf/dma-buf.c:1527 dma_buf_vmap+0x224/0x430
[...]
[ 156.942028] RIP: 0010:dma_buf_vmap+0x224/0x430
[ 157.043420] Call Trace:
[ 157.045898] <TASK>
[ 157.048030] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.052436] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.056836] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.061253] ? drm_gem_shmem_vmap+0x74/0x710
[ 157.065567] ? dma_buf_vmap+0x224/0x430
[ 157.069446] ? __warn.cold+0x58/0xe4
[ 157.073061] ? dma_buf_vmap+0x224/0x430
[ 157.077111] ? report_bug+0x1dd/0x390
[ 157.080842] ? handle_bug+0x5e/0xa0
[ 157.084389] ? exc_invalid_op+0x14/0x50
[ 157.088291] ? asm_exc_invalid_op+0x16/0x20
[ 157.092548] ? dma_buf_vmap+0x224/0x430
[ 157.096663] ? dma_resv_get_singleton+0x6d/0x230
[ 157.101341] ? __pfx_dma_buf_vmap+0x10/0x10
[ 157.105588] ? __pfx_dma_resv_get_singleton+0x10/0x10
[ 157.110697] drm_gem_shmem_vmap+0x74/0x710
[ 157.114866] drm_gem_vmap+0xa9/0x1b0
[ 157.118763] drm_gem_vmap_unlocked+0x46/0xa0
[ 157.123086] drm_gem_fb_vmap+0xab/0x300
[ 157.126979] drm_atomic_helper_prepare_planes.part.0+0x487/0xb10
[ 157.133032] ? lockdep_init_map_type+0x19d/0x880
[ 157.137701] drm_atomic_helper_commit+0x13d/0x2e0
[ 157.142671] ? drm_atomic_nonblocking_commit+0xa0/0x180
[ 157.147988] drm_mode_atomic_ioctl+0x766/0xe40
[...]
[ 157.346424] ---[ end trace 0000000000000000 ]---
Acquiring GEM handles for the framebuffer's GEM buffer objects prevents
this from happening. The framebuffer's cleanup later puts the handle
references.
Commit 1a148af06000 ("drm/gem-shmem: Use dma_buf from GEM object
instance") triggers the segmentation fault easily by using the dma-buf
field more widely. The underlying issue with reference counting has
been present before.
v2:
- acquire the handle instead of the BO (Christian)
- fix comment style (Christian)
- drop the Fixes tag (Christian)
- rename err_ gotos
- add missing Link tag
In the Linux kernel, the following vulnerability has been resolved:
s390/mm: Fix in_atomic() handling in do_secure_storage_access()
Kernel user spaces accesses to not exported pages in atomic context
incorrectly try to resolve the page fault.
With debug options enabled call traces like this can be seen:
BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1523
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 419074, name: qemu-system-s39
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
INFO: lockdep is turned off.
Preemption disabled at:
[<00000383ea47cfa2>] copy_page_from_iter_atomic+0xa2/0x8a0
CPU: 12 UID: 0 PID: 419074 Comm: qemu-system-s39
Tainted: G W 6.16.0-20250531.rc0.git0.69b3a602feac.63.fc42.s390x+debug #1 PREEMPT
Tainted: [W]=WARN
Hardware name: IBM 3931 A01 703 (LPAR)
Call Trace:
[<00000383e990d282>] dump_stack_lvl+0xa2/0xe8
[<00000383e99bf152>] __might_resched+0x292/0x2d0
[<00000383eaa7c374>] down_read+0x34/0x2d0
[<00000383e99432f8>] do_secure_storage_access+0x108/0x360
[<00000383eaa724b0>] __do_pgm_check+0x130/0x220
[<00000383eaa842e4>] pgm_check_handler+0x114/0x160
[<00000383ea47d028>] copy_page_from_iter_atomic+0x128/0x8a0
([<00000383ea47d016>] copy_page_from_iter_atomic+0x116/0x8a0)
[<00000383e9c45eae>] generic_perform_write+0x16e/0x310
[<00000383e9eb87f4>] ext4_buffered_write_iter+0x84/0x160
[<00000383e9da0de4>] vfs_write+0x1c4/0x460
[<00000383e9da123c>] ksys_write+0x7c/0x100
[<00000383eaa7284e>] __do_syscall+0x15e/0x280
[<00000383eaa8417e>] system_call+0x6e/0x90
INFO: lockdep is turned off.
It is not allowed to take the mmap_lock while in atomic context. Therefore
handle such a secure storage access fault as if the accessed page is not
mapped: the uaccess function will return -EFAULT, and the caller has to
deal with this. Usually this means that the access is retried in process
context, which allows to resolve the page fault (or in this case export the
page).
In the Linux kernel, the following vulnerability has been resolved:
smb: Log an error when close_all_cached_dirs fails
Under low-memory conditions, close_all_cached_dirs() can't move the
dentries to a separate list to dput() them once the locks are dropped.
This will result in a "Dentry still in use" error, so add an error
message that makes it clear this is what happened:
[ 495.281119] CIFS: VFS: \\otters.example.com\share Out of memory while dropping dentries
[ 495.281595] ------------[ cut here ]------------
[ 495.281887] BUG: Dentry ffff888115531138{i=78,n=/} still in use (2) [unmount of cifs cifs]
[ 495.282391] WARNING: CPU: 1 PID: 2329 at fs/dcache.c:1536 umount_check+0xc8/0xf0
Also, bail out of looping through all tcons as soon as a single
allocation fails, since we're already in trouble, and kmalloc() attempts
for subseqeuent tcons are likely to fail just like the first one did.