A `named` instance configured to run as a DNSSEC-validating recursive resolver with the Aggressive Use of DNSSEC-Validated Cache (RFC 8198) option (`synth-from-dnssec`) enabled can be remotely terminated using a zone with a malformed NSEC record.
This issue affects BIND 9 versions 9.16.8-S1 through 9.16.41-S1 and 9.18.11-S1 through 9.18.15-S1.
If the `recursive-clients` quota is reached on a BIND 9 resolver configured with both `stale-answer-enable yes;` and `stale-answer-client-timeout 0;`, a sequence of serve-stale-related lookups could cause `named` to loop and terminate unexpectedly due to a stack overflow.
This issue affects BIND 9 versions 9.16.33 through 9.16.41, 9.18.7 through 9.18.15, 9.16.33-S1 through 9.16.41-S1, and 9.18.11-S1 through 9.18.15-S1.
The current implementation of the prctl syscall does not issue an IBPB immediately during the syscall. The ib_prctl_set function updates the Thread Information Flags (TIFs) for the task and updates the SPEC_CTRL MSR on the function __speculation_ctrl_update, but the IBPB is only issued on the next schedule, when the TIF bits are checked. This leaves the victim vulnerable to values already injected on the BTB, prior to the prctl syscall. The patch that added the support for the conditional mitigation via prctl (ib_prctl_set) dates back to the kernel 4.9.176.
We recommend upgrading past commit a664ec9158eeddd75121d39c9a0758016097fa96
In Spring Security, versions 5.7.x prior to 5.7.8, versions 5.8.x prior to 5.8.3, and versions 6.0.x prior to 6.0.3, the logout support does not properly clean the security context if using serialized versions. Additionally, it is not possible to explicitly save an empty security context to the HttpSessionSecurityContextRepository. This vulnerability can keep users authenticated even after they performed logout. Users of affected versions should apply the following mitigation. 5.7.x users should upgrade to 5.7.8. 5.8.x users should upgrade to 5.8.3. 6.0.x users should upgrade to 6.0.3.
The email module of Python through 3.11.3 incorrectly parses e-mail addresses that contain a special character. The wrong portion of an RFC2822 header is identified as the value of the addr-spec. In some applications, an attacker can bypass a protection mechanism in which application access is granted only after verifying receipt of e-mail to a specific domain (e.g., only @company.example.com addresses may be used for signup). This occurs in email/_parseaddr.py in recent versions of Python.
Jetty is a java based web server and servlet engine. Nonstandard cookie parsing in Jetty may allow an attacker to smuggle cookies within other cookies, or otherwise perform unintended behavior by tampering with the cookie parsing mechanism. If Jetty sees a cookie VALUE that starts with `"` (double quote), it will continue to read the cookie string until it sees a closing quote -- even if a semicolon is encountered. So, a cookie header such as: `DISPLAY_LANGUAGE="b; JSESSIONID=1337; c=d"` will be parsed as one cookie, with the name DISPLAY_LANGUAGE and a value of b; JSESSIONID=1337; c=d instead of 3 separate cookies. This has security implications because if, say, JSESSIONID is an HttpOnly cookie, and the DISPLAY_LANGUAGE cookie value is rendered on the page, an attacker can smuggle the JSESSIONID cookie into the DISPLAY_LANGUAGE cookie and thereby exfiltrate it. This is significant when an intermediary is enacting some policy based on cookies, so a smuggled cookie can bypass that policy yet still be seen by the Jetty server or its logging system. This issue has been addressed in versions 9.4.51, 10.0.14, 11.0.14, and 12.0.0.beta0 and users are advised to upgrade. There are no known workarounds for this issue.
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Components Services). Supported versions that are affected are 8.0.32 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).
Vulnerability in the MySQL Connectors product of Oracle MySQL (component: Connector/J). Supported versions that are affected are 8.0.32 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Connectors. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Connectors as well as unauthorized update, insert or delete access to some of MySQL Connectors accessible data and unauthorized read access to a subset of MySQL Connectors accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:R/S:U/C:L/I:L/A:H).
Vulnerability in the MySQL Server product of Oracle MySQL (component: Server: Optimizer). Supported versions that are affected are 8.0.32 and prior. Easily exploitable vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Server. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Server. CVSS 3.1 Base Score 4.9 (Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H).