Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 6.6.63  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: net: stmmac: dwmac-tegra: Read iommu stream id from device tree Nvidia's Tegra MGBE controllers require the IOMMU "Stream ID" (SID) to be written to the MGBE_WRAP_AXI_ASID0_CTRL register. The current driver is hard coded to use MGBE0's SID for all controllers. This causes softirq time outs and kernel panics when using controllers other than MGBE0. Example dmesg errors when an ethernet cable is connected to MGBE1: [ 116.133290] tegra-mgbe 6910000.ethernet eth1: Link is Up - 1Gbps/Full - flow control rx/tx [ 121.851283] tegra-mgbe 6910000.ethernet eth1: NETDEV WATCHDOG: CPU: 5: transmit queue 0 timed out 5690 ms [ 121.851782] tegra-mgbe 6910000.ethernet eth1: Reset adapter. [ 121.892464] tegra-mgbe 6910000.ethernet eth1: Register MEM_TYPE_PAGE_POOL RxQ-0 [ 121.905920] tegra-mgbe 6910000.ethernet eth1: PHY [stmmac-1:00] driver [Aquantia AQR113] (irq=171) [ 121.907356] tegra-mgbe 6910000.ethernet eth1: Enabling Safety Features [ 121.907578] tegra-mgbe 6910000.ethernet eth1: IEEE 1588-2008 Advanced Timestamp supported [ 121.908399] tegra-mgbe 6910000.ethernet eth1: registered PTP clock [ 121.908582] tegra-mgbe 6910000.ethernet eth1: configuring for phy/10gbase-r link mode [ 125.961292] tegra-mgbe 6910000.ethernet eth1: Link is Up - 1Gbps/Full - flow control rx/tx [ 181.921198] rcu: INFO: rcu_preempt detected stalls on CPUs/tasks: [ 181.921404] rcu: 7-....: (1 GPs behind) idle=540c/1/0x4000000000000002 softirq=1748/1749 fqs=2337 [ 181.921684] rcu: (detected by 4, t=6002 jiffies, g=1357, q=1254 ncpus=8) [ 181.921878] Sending NMI from CPU 4 to CPUs 7: [ 181.921886] NMI backtrace for cpu 7 [ 181.922131] CPU: 7 UID: 0 PID: 0 Comm: swapper/7 Kdump: loaded Not tainted 6.13.0-rc3+ #6 [ 181.922390] Hardware name: NVIDIA CTI Forge + Orin AGX/Jetson, BIOS 202402.1-Unknown 10/28/2024 [ 181.922658] pstate: 40400009 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 181.922847] pc : handle_softirqs+0x98/0x368 [ 181.922978] lr : __do_softirq+0x18/0x20 [ 181.923095] sp : ffff80008003bf50 [ 181.923189] x29: ffff80008003bf50 x28: 0000000000000008 x27: 0000000000000000 [ 181.923379] x26: ffffce78ea277000 x25: 0000000000000000 x24: 0000001c61befda0 [ 181.924486] x23: 0000000060400009 x22: ffffce78e99918bc x21: ffff80008018bd70 [ 181.925568] x20: ffffce78e8bb00d8 x19: ffff80008018bc20 x18: 0000000000000000 [ 181.926655] x17: ffff318ebe7d3000 x16: ffff800080038000 x15: 0000000000000000 [ 181.931455] x14: ffff000080816680 x13: ffff318ebe7d3000 x12: 000000003464d91d [ 181.938628] x11: 0000000000000040 x10: ffff000080165a70 x9 : ffffce78e8bb0160 [ 181.945804] x8 : ffff8000827b3160 x7 : f9157b241586f343 x6 : eeb6502a01c81c74 [ 181.953068] x5 : a4acfcdd2e8096bb x4 : ffffce78ea277340 x3 : 00000000ffffd1e1 [ 181.960329] x2 : 0000000000000101 x1 : ffffce78ea277340 x0 : ffff318ebe7d3000 [ 181.967591] Call trace: [ 181.970043] handle_softirqs+0x98/0x368 (P) [ 181.974240] __do_softirq+0x18/0x20 [ 181.977743] ____do_softirq+0x14/0x28 [ 181.981415] call_on_irq_stack+0x24/0x30 [ 181.985180] do_softirq_own_stack+0x20/0x30 [ 181.989379] __irq_exit_rcu+0x114/0x140 [ 181.993142] irq_exit_rcu+0x14/0x28 [ 181.996816] el1_interrupt+0x44/0xb8 [ 182.000316] el1h_64_irq_handler+0x14/0x20 [ 182.004343] el1h_64_irq+0x80/0x88 [ 182.007755] cpuidle_enter_state+0xc4/0x4a8 (P) [ 182.012305] cpuidle_enter+0x3c/0x58 [ 182.015980] cpuidle_idle_call+0x128/0x1c0 [ 182.020005] do_idle+0xe0/0xf0 [ 182.023155] cpu_startup_entry+0x3c/0x48 [ 182.026917] secondary_start_kernel+0xdc/0x120 [ 182.031379] __secondary_switched+0x74/0x78 [ 212.971162] rcu: INFO: rcu_preempt detected expedited stalls on CPUs/tasks: { 7-.... } 6103 jiffies s: 417 root: 0x80/. [ 212.985935] rcu: blocking rcu_node structures (internal RCU debug): [ 212.992758] Sending NMI from CPU 0 to CPUs 7: [ 212.998539] NMI backtrace for cpu 7 [ 213.004304] CPU: 7 UID: 0 PI ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-01-21
In the Linux kernel, the following vulnerability has been resolved: exfat: fix the infinite loop in exfat_readdir() If the file system is corrupted so that a cluster is linked to itself in the cluster chain, and there is an unused directory entry in the cluster, 'dentry' will not be incremented, causing condition 'dentry < max_dentries' unable to prevent an infinite loop. This infinite loop causes s_lock not to be released, and other tasks will hang, such as exfat_sync_fs(). This commit stops traversing the cluster chain when there is unused directory entry in the cluster to avoid this infinite loop.
CVSS Score
5.5
EPSS Score
0.001
Published
2025-01-21
In the Linux kernel, the following vulnerability has been resolved: riscv: Fix sleeping in invalid context in die() die() can be called in exception handler, and therefore cannot sleep. However, die() takes spinlock_t which can sleep with PREEMPT_RT enabled. That causes the following warning: BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:48 in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 285, name: mutex preempt_count: 110001, expected: 0 RCU nest depth: 0, expected: 0 CPU: 0 UID: 0 PID: 285 Comm: mutex Not tainted 6.12.0-rc7-00022-ge19049cf7d56-dirty #234 Hardware name: riscv-virtio,qemu (DT) Call Trace: dump_backtrace+0x1c/0x24 show_stack+0x2c/0x38 dump_stack_lvl+0x5a/0x72 dump_stack+0x14/0x1c __might_resched+0x130/0x13a rt_spin_lock+0x2a/0x5c die+0x24/0x112 do_trap_insn_illegal+0xa0/0xea _new_vmalloc_restore_context_a0+0xcc/0xd8 Oops - illegal instruction [#1] Switch to use raw_spinlock_t, which does not sleep even with PREEMPT_RT enabled.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-01-21
In the Linux kernel, the following vulnerability has been resolved: net/sctp: Prevent autoclose integer overflow in sctp_association_init() While by default max_autoclose equals to INT_MAX / HZ, one may set net.sctp.max_autoclose to UINT_MAX. There is code in sctp_association_init() that can consequently trigger overflow.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-01-21
In the Linux kernel, the following vulnerability has been resolved: selinux: ignore unknown extended permissions When evaluating extended permissions, ignore unknown permissions instead of calling BUG(). This commit ensures that future permissions can be added without interfering with older kernels.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-01-21
In the Linux kernel, the following vulnerability has been resolved: gve: guard XDP xmit NDO on existence of xdp queues In GVE, dedicated XDP queues only exist when an XDP program is installed and the interface is up. As such, the NDO XDP XMIT callback should return early if either of these conditions are false. In the case of no loaded XDP program, priv->num_xdp_queues=0 which can cause a divide-by-zero error, and in the case of interface down, num_xdp_queues remains untouched to persist XDP queue count for the next interface up, but the TX pointer itself would be NULL. The XDP xmit callback also needs to synchronize with a device transitioning from open to close. This synchronization will happen via the GVE_PRIV_FLAGS_NAPI_ENABLED bit along with a synchronize_net() call, which waits for any RCU critical sections at call-time to complete.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-01-21
In the Linux kernel, the following vulnerability has been resolved: gve: guard XSK operations on the existence of queues This patch predicates the enabling and disabling of XSK pools on the existence of queues. As it stands, if the interface is down, disabling or enabling XSK pools would result in a crash, as the RX queue pointer would be NULL. XSK pool registration will occur as part of the next interface up. Similarly, xsk_wakeup needs be guarded against queues disappearing while the function is executing, so a check against the GVE_PRIV_FLAGS_NAPI_ENABLED flag is added to synchronize with the disabling of the bit and the synchronize_net() in gve_turndown.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-01-21
In the Linux kernel, the following vulnerability has been resolved: io_uring/eventfd: ensure io_eventfd_signal() defers another RCU period io_eventfd_do_signal() is invoked from an RCU callback, but when dropping the reference to the io_ev_fd, it calls io_eventfd_free() directly if the refcount drops to zero. This isn't correct, as any potential freeing of the io_ev_fd should be deferred another RCU grace period. Just call io_eventfd_put() rather than open-code the dec-and-test and free, which will correctly defer it another RCU grace period.
CVSS Score
4.7
EPSS Score
0.001
Published
2025-01-20
In the Linux kernel, the following vulnerability has been resolved: dm array: fix releasing a faulty array block twice in dm_array_cursor_end When dm_bm_read_lock() fails due to locking or checksum errors, it releases the faulty block implicitly while leaving an invalid output pointer behind. The caller of dm_bm_read_lock() should not operate on this invalid dm_block pointer, or it will lead to undefined result. For example, the dm_array_cursor incorrectly caches the invalid pointer on reading a faulty array block, causing a double release in dm_array_cursor_end(), then hitting the BUG_ON in dm-bufio cache_put(). Reproduce steps: 1. initialize a cache device dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc $262144" dd if=/dev/zero of=/dev/mapper/cmeta bs=4k count=1 dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" 2. wipe the second array block offline dmsteup remove cache cmeta cdata corig mapping_root=$(dd if=/dev/sdc bs=1c count=8 skip=192 \ 2>/dev/null | hexdump -e '1/8 "%u\n"') ablock=$(dd if=/dev/sdc bs=1c count=8 skip=$((4096*mapping_root+2056)) \ 2>/dev/null | hexdump -e '1/8 "%u\n"') dd if=/dev/zero of=/dev/sdc bs=4k count=1 seek=$ablock 3. try reopen the cache device dmsetup create cmeta --table "0 8192 linear /dev/sdc 0" dmsetup create cdata --table "0 65536 linear /dev/sdc 8192" dmsetup create corig --table "0 524288 linear /dev/sdc $262144" dmsetup create cache --table "0 524288 cache /dev/mapper/cmeta \ /dev/mapper/cdata /dev/mapper/corig 128 2 metadata2 writethrough smq 0" Kernel logs: (snip) device-mapper: array: array_block_check failed: blocknr 0 != wanted 10 device-mapper: block manager: array validator check failed for block 10 device-mapper: array: get_ablock failed device-mapper: cache metadata: dm_array_cursor_next for mapping failed ------------[ cut here ]------------ kernel BUG at drivers/md/dm-bufio.c:638! Fix by setting the cached block pointer to NULL on errors. In addition to the reproducer described above, this fix can be verified using the "array_cursor/damaged" test in dm-unit: dm-unit run /pdata/array_cursor/damaged --kernel-dir <KERNEL_DIR>
CVSS Score
7.1
EPSS Score
0.001
Published
2025-01-19
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Add check for granularity in dml ceil/floor helpers [Why] Wrapper functions for dcn_bw_ceil2() and dcn_bw_floor2() should check for granularity is non zero to avoid assert and divide-by-zero error in dcn_bw_ functions. [How] Add check for granularity 0. (cherry picked from commit f6e09701c3eb2ccb8cb0518e0b67f1c69742a4ec)
CVSS Score
5.5
EPSS Score
0.001
Published
2025-01-19


Contact Us

Shodan ® - All rights reserved