In the Linux kernel, the following vulnerability has been resolved:
x86, relocs: Ignore relocations in .notes section
When building with CONFIG_XEN_PV=y, .text symbols are emitted into
the .notes section so that Xen can find the "startup_xen" entry point.
This information is used prior to booting the kernel, so relocations
are not useful. In fact, performing relocations against the .notes
section means that the KASLR base is exposed since /sys/kernel/notes
is world-readable.
To avoid leaking the KASLR base without breaking unprivileged tools that
are expecting to read /sys/kernel/notes, skip performing relocations in
the .notes section. The values readable in .notes are then identical to
those found in System.map.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate payload size in ipc response
If installing malicious ksmbd-tools, ksmbd.mountd can return invalid ipc
response to ksmbd kernel server. ksmbd should validate payload size of
ipc response from ksmbd.mountd to avoid memory overrun or
slab-out-of-bounds. This patch validate 3 ipc response that has payload.
In the Linux kernel, the following vulnerability has been resolved:
net: ip_tunnel: prevent perpetual headroom growth
syzkaller triggered following kasan splat:
BUG: KASAN: use-after-free in __skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
Read of size 1 at addr ffff88812fb4000e by task syz-executor183/5191
[..]
kasan_report+0xda/0x110 mm/kasan/report.c:588
__skb_flow_dissect+0x19d1/0x7a50 net/core/flow_dissector.c:1170
skb_flow_dissect_flow_keys include/linux/skbuff.h:1514 [inline]
___skb_get_hash net/core/flow_dissector.c:1791 [inline]
__skb_get_hash+0xc7/0x540 net/core/flow_dissector.c:1856
skb_get_hash include/linux/skbuff.h:1556 [inline]
ip_tunnel_xmit+0x1855/0x33c0 net/ipv4/ip_tunnel.c:748
ipip_tunnel_xmit+0x3cc/0x4e0 net/ipv4/ipip.c:308
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
__dev_queue_xmit+0x7c1/0x3d60 net/core/dev.c:4349
dev_queue_xmit include/linux/netdevice.h:3134 [inline]
neigh_connected_output+0x42c/0x5d0 net/core/neighbour.c:1592
...
ip_finish_output2+0x833/0x2550 net/ipv4/ip_output.c:235
ip_finish_output+0x31/0x310 net/ipv4/ip_output.c:323
..
iptunnel_xmit+0x5b4/0x9b0 net/ipv4/ip_tunnel_core.c:82
ip_tunnel_xmit+0x1dbc/0x33c0 net/ipv4/ip_tunnel.c:831
ipgre_xmit+0x4a1/0x980 net/ipv4/ip_gre.c:665
__netdev_start_xmit include/linux/netdevice.h:4940 [inline]
netdev_start_xmit include/linux/netdevice.h:4954 [inline]
xmit_one net/core/dev.c:3548 [inline]
dev_hard_start_xmit+0x13d/0x6d0 net/core/dev.c:3564
...
The splat occurs because skb->data points past skb->head allocated area.
This is because neigh layer does:
__skb_pull(skb, skb_network_offset(skb));
... but skb_network_offset() returns a negative offset and __skb_pull()
arg is unsigned. IOW, we skb->data gets "adjusted" by a huge value.
The negative value is returned because skb->head and skb->data distance is
more than 64k and skb->network_header (u16) has wrapped around.
The bug is in the ip_tunnel infrastructure, which can cause
dev->needed_headroom to increment ad infinitum.
The syzkaller reproducer consists of packets getting routed via a gre
tunnel, and route of gre encapsulated packets pointing at another (ipip)
tunnel. The ipip encapsulation finds gre0 as next output device.
This results in the following pattern:
1). First packet is to be sent out via gre0.
Route lookup found an output device, ipip0.
2).
ip_tunnel_xmit for gre0 bumps gre0->needed_headroom based on the future
output device, rt.dev->needed_headroom (ipip0).
3).
ip output / start_xmit moves skb on to ipip0. which runs the same
code path again (xmit recursion).
4).
Routing step for the post-gre0-encap packet finds gre0 as output device
to use for ipip0 encapsulated packet.
tunl0->needed_headroom is then incremented based on the (already bumped)
gre0 device headroom.
This repeats for every future packet:
gre0->needed_headroom gets inflated because previous packets' ipip0 step
incremented rt->dev (gre0) headroom, and ipip0 incremented because gre0
needed_headroom was increased.
For each subsequent packet, gre/ipip0->needed_headroom grows until
post-expand-head reallocations result in a skb->head/data distance of
more than 64k.
Once that happens, skb->network_header (u16) wraps around when
pskb_expand_head tries to make sure that skb_network_offset() is unchanged
after the headroom expansion/reallocation.
After this skb_network_offset(skb) returns a different (and negative)
result post headroom expansion.
The next trip to neigh layer (or anything else that would __skb_pull the
network header) makes skb->data point to a memory location outside
skb->head area.
v2: Cap the needed_headroom update to an arbitarily chosen upperlimit to
prevent perpetual increase instead of dropping the headroom increment
completely.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: dev-replace: properly validate device names
There's a syzbot report that device name buffers passed to device
replace are not properly checked for string termination which could lead
to a read out of bounds in getname_kernel().
Add a helper that validates both source and target device name buffers.
For devid as the source initialize the buffer to empty string in case
something tries to read it later.
This was originally analyzed and fixed in a different way by Edward Adam
Davis (see links).
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid allocating blocks from corrupted group in ext4_mb_find_by_goal()
Places the logic for checking if the group's block bitmap is corrupt under
the protection of the group lock to avoid allocating blocks from the group
with a corrupted block bitmap.
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid allocating blocks from corrupted group in ext4_mb_try_best_found()
Determine if the group block bitmap is corrupted before using ac_b_ex in
ext4_mb_try_best_found() to avoid allocating blocks from a group with a
corrupted block bitmap in the following concurrency and making the
situation worse.
ext4_mb_regular_allocator
ext4_lock_group(sb, group)
ext4_mb_good_group
// check if the group bbitmap is corrupted
ext4_mb_complex_scan_group
// Scan group gets ac_b_ex but doesn't use it
ext4_unlock_group(sb, group)
ext4_mark_group_bitmap_corrupted(group)
// The block bitmap was corrupted during
// the group unlock gap.
ext4_mb_try_best_found
ext4_lock_group(ac->ac_sb, group)
ext4_mb_use_best_found
mb_mark_used
// Allocating blocks in block bitmap corrupted group
In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid dividing by 0 in mb_update_avg_fragment_size() when block bitmap corrupt
Determine if bb_fragments is 0 instead of determining bb_free to eliminate
the risk of dividing by zero when the block bitmap is corrupted.
In the Linux kernel, the following vulnerability has been resolved:
aoe: avoid potential deadlock at set_capacity
Move set_capacity() outside of the section procected by (&d->lock).
To avoid possible interrupt unsafe locking scenario:
CPU0 CPU1
---- ----
[1] lock(&bdev->bd_size_lock);
local_irq_disable();
[2] lock(&d->lock);
[3] lock(&bdev->bd_size_lock);
<Interrupt>
[4] lock(&d->lock);
*** DEADLOCK ***
Where [1](&bdev->bd_size_lock) hold by zram_add()->set_capacity().
[2]lock(&d->lock) hold by aoeblk_gdalloc(). And aoeblk_gdalloc()
is trying to acquire [3](&bdev->bd_size_lock) at set_capacity() call.
In this situation an attempt to acquire [4]lock(&d->lock) from
aoecmd_cfg_rsp() will lead to deadlock.
So the simplest solution is breaking lock dependency
[2](&d->lock) -> [3](&bdev->bd_size_lock) by moving set_capacity()
outside.
In the Linux kernel, the following vulnerability has been resolved:
spi: hisi-sfc-v3xx: Return IRQ_NONE if no interrupts were detected
Return IRQ_NONE from the interrupt handler when no interrupt was
detected. Because an empty interrupt will cause a null pointer error:
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000008
Call trace:
complete+0x54/0x100
hisi_sfc_v3xx_isr+0x2c/0x40 [spi_hisi_sfc_v3xx]
__handle_irq_event_percpu+0x64/0x1e0
handle_irq_event+0x7c/0x1cc
In the Linux kernel, the following vulnerability has been resolved:
fbdev: sis: Error out if pixclock equals zero
The userspace program could pass any values to the driver through
ioctl() interface. If the driver doesn't check the value of pixclock,
it may cause divide-by-zero error.
In sisfb_check_var(), var->pixclock is used as a divisor to caculate
drate before it is checked against zero. Fix this by checking it
at the beginning.
This is similar to CVE-2022-3061 in i740fb which was fixed by
commit 15cf0b8.