In the Linux kernel, the following vulnerability has been resolved:
netfilter: IDLETIMER: Fix for possible ABBA deadlock
Deletion of the last rule referencing a given idletimer may happen at
the same time as a read of its file in sysfs:
| ======================================================
| WARNING: possible circular locking dependency detected
| 6.12.0-rc7-01692-g5e9a28f41134-dirty #594 Not tainted
| ------------------------------------------------------
| iptables/3303 is trying to acquire lock:
| ffff8881057e04b8 (kn->active#48){++++}-{0:0}, at: __kernfs_remove+0x20
|
| but task is already holding lock:
| ffffffffa0249068 (list_mutex){+.+.}-{3:3}, at: idletimer_tg_destroy_v]
|
| which lock already depends on the new lock.
A simple reproducer is:
| #!/bin/bash
|
| while true; do
| iptables -A INPUT -i foo -j IDLETIMER --timeout 10 --label "testme"
| iptables -D INPUT -i foo -j IDLETIMER --timeout 10 --label "testme"
| done &
| while true; do
| cat /sys/class/xt_idletimer/timers/testme >/dev/null
| done
Avoid this by freeing list_mutex right after deleting the element from
the list, then continuing with the teardown.
In the Linux kernel, the following vulnerability has been resolved:
net: renesas: rswitch: avoid use-after-put for a device tree node
The device tree node saved in the rswitch_device structure is used at
several driver locations. So passing this node to of_node_put() after
the first use is wrong.
Move of_node_put() for this node to exit paths.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: prevent use of deleted inode
syzbot reported a WARNING in nilfs_rmdir. [1]
Because the inode bitmap is corrupted, an inode with an inode number that
should exist as a ".nilfs" file was reassigned by nilfs_mkdir for "file0",
causing an inode duplication during execution. And this causes an
underflow of i_nlink in rmdir operations.
The inode is used twice by the same task to unmount and remove directories
".nilfs" and "file0", it trigger warning in nilfs_rmdir.
Avoid to this issue, check i_nlink in nilfs_iget(), if it is 0, it means
that this inode has been deleted, and iput is executed to reclaim it.
[1]
WARNING: CPU: 1 PID: 5824 at fs/inode.c:407 drop_nlink+0xc4/0x110 fs/inode.c:407
...
Call Trace:
<TASK>
nilfs_rmdir+0x1b0/0x250 fs/nilfs2/namei.c:342
vfs_rmdir+0x3a3/0x510 fs/namei.c:4394
do_rmdir+0x3b5/0x580 fs/namei.c:4453
__do_sys_rmdir fs/namei.c:4472 [inline]
__se_sys_rmdir fs/namei.c:4470 [inline]
__x64_sys_rmdir+0x47/0x50 fs/namei.c:4470
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
In the Linux kernel, the following vulnerability has been resolved:
igb: Fix potential invalid memory access in igb_init_module()
The pci_register_driver() can fail and when this happened, the dca_notifier
needs to be unregistered, otherwise the dca_notifier can be called when
igb fails to install, resulting to invalid memory access.
In the Linux kernel, the following vulnerability has been resolved:
ipvs: fix UB due to uninitialized stack access in ip_vs_protocol_init()
Under certain kernel configurations when building with Clang/LLVM, the
compiler does not generate a return or jump as the terminator
instruction for ip_vs_protocol_init(), triggering the following objtool
warning during build time:
vmlinux.o: warning: objtool: ip_vs_protocol_init() falls through to next function __initstub__kmod_ip_vs_rr__935_123_ip_vs_rr_init6()
At runtime, this either causes an oops when trying to load the ipvs
module or a boot-time panic if ipvs is built-in. This same issue has
been reported by the Intel kernel test robot previously.
Digging deeper into both LLVM and the kernel code reveals this to be a
undefined behavior problem. ip_vs_protocol_init() uses a on-stack buffer
of 64 chars to store the registered protocol names and leaves it
uninitialized after definition. The function calls strnlen() when
concatenating protocol names into the buffer. With CONFIG_FORTIFY_SOURCE
strnlen() performs an extra step to check whether the last byte of the
input char buffer is a null character (commit 3009f891bb9f ("fortify:
Allow strlen() and strnlen() to pass compile-time known lengths")).
This, together with possibly other configurations, cause the following
IR to be generated:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #5 section ".init.text" align 16 !kcfi_type !29 {
%1 = alloca [64 x i8], align 16
...
14: ; preds = %11
%15 = getelementptr inbounds i8, ptr %1, i64 63
%16 = load i8, ptr %15, align 1
%17 = tail call i1 @llvm.is.constant.i8(i8 %16)
%18 = icmp eq i8 %16, 0
%19 = select i1 %17, i1 %18, i1 false
br i1 %19, label %20, label %23
20: ; preds = %14
%21 = call i64 @strlen(ptr noundef nonnull dereferenceable(1) %1) #23
...
23: ; preds = %14, %11, %20
%24 = call i64 @strnlen(ptr noundef nonnull dereferenceable(1) %1, i64 noundef 64) #24
...
}
The above code calculates the address of the last char in the buffer
(value %15) and then loads from it (value %16). Because the buffer is
never initialized, the LLVM GVN pass marks value %16 as undefined:
%13 = getelementptr inbounds i8, ptr %1, i64 63
br i1 undef, label %14, label %17
This gives later passes (SCCP, in particular) more DCE opportunities by
propagating the undef value further, and eventually removes everything
after the load on the uninitialized stack location:
define hidden i32 @ip_vs_protocol_init() local_unnamed_addr #0 section ".init.text" align 16 !kcfi_type !11 {
%1 = alloca [64 x i8], align 16
...
12: ; preds = %11
%13 = getelementptr inbounds i8, ptr %1, i64 63
unreachable
}
In this way, the generated native code will just fall through to the
next function, as LLVM does not generate any code for the unreachable IR
instruction and leaves the function without a terminator.
Zero the on-stack buffer to avoid this possible UB.
In the Linux kernel, the following vulnerability has been resolved:
ceph: give up on paths longer than PATH_MAX
If the full path to be built by ceph_mdsc_build_path() happens to be
longer than PATH_MAX, then this function will enter an endless (retry)
loop, effectively blocking the whole task. Most of the machine
becomes unusable, making this a very simple and effective DoS
vulnerability.
I cannot imagine why this retry was ever implemented, but it seems
rather useless and harmful to me. Let's remove it and fail with
ENAMETOOLONG instead.
In the Linux kernel, the following vulnerability has been resolved:
net/smc: check iparea_offset and ipv6_prefixes_cnt when receiving proposal msg
When receiving proposal msg in server, the field iparea_offset
and the field ipv6_prefixes_cnt in proposal msg are from the
remote client and can not be fully trusted. Especially the
field iparea_offset, once exceed the max value, there has the
chance to access wrong address, and crash may happen.
This patch checks iparea_offset and ipv6_prefixes_cnt before using them.
In the Linux kernel, the following vulnerability has been resolved:
spi: mpc52xx: Add cancel_work_sync before module remove
If we remove the module which will call mpc52xx_spi_remove
it will free 'ms' through spi_unregister_controller.
while the work ms->work will be used. The sequence of operations
that may lead to a UAF bug.
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in mpc52xx_spi_remove.
In the Linux kernel, the following vulnerability has been resolved:
bcache: revert replacing IS_ERR_OR_NULL with IS_ERR again
Commit 028ddcac477b ("bcache: Remove unnecessary NULL point check in
node allocations") leads a NULL pointer deference in cache_set_flush().
1721 if (!IS_ERR_OR_NULL(c->root))
1722 list_add(&c->root->list, &c->btree_cache);
>From the above code in cache_set_flush(), if previous registration code
fails before allocating c->root, it is possible c->root is NULL as what
it is initialized. __bch_btree_node_alloc() never returns NULL but
c->root is possible to be NULL at above line 1721.
This patch replaces IS_ERR() by IS_ERR_OR_NULL() to fix this.