In the Linux kernel, the following vulnerability has been resolved:
ALSA: emu10k1: Fix out of bounds access in snd_emu10k1_pcm_channel_alloc()
The voice allocator sometimes begins allocating from near the end of the
array and then wraps around, however snd_emu10k1_pcm_channel_alloc()
accesses the newly allocated voices as if it never wrapped around.
This results in out of bounds access if the first voice has a high enough
index so that first_voice + requested_voice_count > NUM_G (64).
The more voices are requested, the more likely it is for this to occur.
This was initially discovered using PipeWire, however it can be reproduced
by calling aplay multiple times with 16 channels:
aplay -r 48000 -D plughw:CARD=Live,DEV=3 -c 16 /dev/zero
UBSAN: array-index-out-of-bounds in sound/pci/emu10k1/emupcm.c:127:40
index 65 is out of range for type 'snd_emu10k1_voice [64]'
CPU: 1 PID: 31977 Comm: aplay Tainted: G W IOE 6.0.0-rc2-emu10k1+ #7
Hardware name: ASUSTEK COMPUTER INC P5W DH Deluxe/P5W DH Deluxe, BIOS 3002 07/22/2010
Call Trace:
<TASK>
dump_stack_lvl+0x49/0x63
dump_stack+0x10/0x16
ubsan_epilogue+0x9/0x3f
__ubsan_handle_out_of_bounds.cold+0x44/0x49
snd_emu10k1_playback_hw_params+0x3bc/0x420 [snd_emu10k1]
snd_pcm_hw_params+0x29f/0x600 [snd_pcm]
snd_pcm_common_ioctl+0x188/0x1410 [snd_pcm]
? exit_to_user_mode_prepare+0x35/0x170
? do_syscall_64+0x69/0x90
? syscall_exit_to_user_mode+0x26/0x50
? do_syscall_64+0x69/0x90
? exit_to_user_mode_prepare+0x35/0x170
snd_pcm_ioctl+0x27/0x40 [snd_pcm]
__x64_sys_ioctl+0x95/0xd0
do_syscall_64+0x5c/0x90
? do_syscall_64+0x69/0x90
? do_syscall_64+0x69/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In the Linux kernel, the following vulnerability has been resolved:
thermal/int340x_thermal: handle data_vault when the value is ZERO_SIZE_PTR
In some case, the GDDV returns a package with a buffer which has
zero length. It causes that kmemdup() returns ZERO_SIZE_PTR (0x10).
Then the data_vault_read() got NULL point dereference problem when
accessing the 0x10 value in data_vault.
[ 71.024560] BUG: kernel NULL pointer dereference, address:
0000000000000010
This patch uses ZERO_OR_NULL_PTR() for checking ZERO_SIZE_PTR or
NULL value in data_vault.
In the Linux kernel, the following vulnerability has been resolved:
media: ttpci: fix two memleaks in budget_av_attach
When saa7146_register_device and saa7146_vv_init fails, budget_av_attach
should free the resources it allocates, like the error-handling of
ttpci_budget_init does. Besides, there are two fixme comment refers to
such deallocations.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: ensure offloading TID queue exists
The resume code path assumes that the TX queue for the offloading TID
has been configured. At resume time it then tries to sync the write
pointer as it may have been updated by the firmware.
In the unusual event that no packets have been send on TID 0, the queue
will not have been allocated and this causes a crash. Fix this by
ensuring the queue exist at suspend time.
In the Linux kernel, the following vulnerability has been resolved:
USB: usb-storage: Prevent divide-by-0 error in isd200_ata_command
The isd200 sub-driver in usb-storage uses the HEADS and SECTORS values
in the ATA ID information to calculate cylinder and head values when
creating a CDB for READ or WRITE commands. The calculation involves
division and modulus operations, which will cause a crash if either of
these values is 0. While this never happens with a genuine device, it
could happen with a flawed or subversive emulation, as reported by the
syzbot fuzzer.
Protect against this possibility by refusing to bind to the device if
either the ATA_ID_HEADS or ATA_ID_SECTORS value in the device's ID
information is 0. This requires isd200_Initialization() to return a
negative error code when initialization fails; currently it always
returns 0 (even when there is an error).
In the Linux kernel, the following vulnerability has been resolved:
media: edia: dvbdev: fix a use-after-free
In dvb_register_device, *pdvbdev is set equal to dvbdev, which is freed
in several error-handling paths. However, *pdvbdev is not set to NULL
after dvbdev's deallocation, causing use-after-frees in many places,
for example, in the following call chain:
budget_register
|-> dvb_dmxdev_init
|-> dvb_register_device
|-> dvb_dmxdev_release
|-> dvb_unregister_device
|-> dvb_remove_device
|-> dvb_device_put
|-> kref_put
When calling dvb_unregister_device, dmxdev->dvbdev (i.e. *pdvbdev in
dvb_register_device) could point to memory that had been freed in
dvb_register_device. Thereafter, this pointer is transferred to
kref_put and triggering a use-after-free.
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix a memleak in gss_import_v2_context
The ctx->mech_used.data allocated by kmemdup is not freed in neither
gss_import_v2_context nor it only caller gss_krb5_import_sec_context,
which frees ctx on error.
Thus, this patch reform the last call of gss_import_v2_context to the
gss_krb5_import_ctx_v2, preventing the memleak while keepping the return
formation.
In the Linux kernel, the following vulnerability has been resolved:
tun: limit printing rate when illegal packet received by tun dev
vhost_worker will call tun call backs to receive packets. If too many
illegal packets arrives, tun_do_read will keep dumping packet contents.
When console is enabled, it will costs much more cpu time to dump
packet and soft lockup will be detected.
net_ratelimit mechanism can be used to limit the dumping rate.
PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980"
#0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253
#1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3
#2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e
#3 [fffffe00003fced0] do_nmi at ffffffff8922660d
#4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663
[exception RIP: io_serial_in+20]
RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002
RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000
RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0
RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f
R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020
R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#5 [ffffa655314979e8] io_serial_in at ffffffff89792594
#6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470
#7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6
#8 [ffffa65531497a20] uart_console_write at ffffffff8978b605
#9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558
#10 [ffffa65531497ac8] console_unlock at ffffffff89316124
#11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07
#12 [ffffa65531497b68] printk at ffffffff89318306
#13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765
#14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun]
#15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun]
#16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net]
#17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost]
#18 [ffffa65531497f10] kthread at ffffffff892d2e72
#19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error
When ncm function is working and then stop usb0 interface for link down,
eth_stop() is called. At this piont, accidentally if usb transport error
should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled.
After that, ncm_disable() is called to disable for ncm unbind
but gether_disconnect() is never called since 'in_ep' is not enabled.
As the result, ncm object is released in ncm unbind
but 'dev->port_usb' associated to 'ncm->port' is not NULL.
And when ncm bind again to recover netdev, ncm object is reallocated
but usb0 interface is already associated to previous released ncm object.
Therefore, once usb0 interface is up and eth_start_xmit() is called,
released ncm object is dereferrenced and it might cause use-after-free memory.
[function unlink via configfs]
usb0: eth_stop dev->port_usb=ffffff9b179c3200
--> error happens in usb_ep_enable().
NCM: ncm_disable: ncm=ffffff9b179c3200
--> no gether_disconnect() since ncm->port.in_ep->enabled is false.
NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200
NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm
[function link via configfs]
NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000
NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000
NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0
usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm
usb0: eth_start dev->port_usb=ffffff9b179c3200 <--
eth_start_xmit()
--> dev->wrap()
Unable to handle kernel paging request at virtual address dead00000000014f
This patch addresses the issue by checking if 'ncm->netdev' is not NULL at
ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'.
It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect
rather than check 'ncm->port.in_ep->enabled' since it might not be enabled
but the gether connection might be established.