In the Linux kernel, the following vulnerability has been resolved:
media: edia: dvbdev: fix a use-after-free
In dvb_register_device, *pdvbdev is set equal to dvbdev, which is freed
in several error-handling paths. However, *pdvbdev is not set to NULL
after dvbdev's deallocation, causing use-after-frees in many places,
for example, in the following call chain:
budget_register
|-> dvb_dmxdev_init
|-> dvb_register_device
|-> dvb_dmxdev_release
|-> dvb_unregister_device
|-> dvb_remove_device
|-> dvb_device_put
|-> kref_put
When calling dvb_unregister_device, dmxdev->dvbdev (i.e. *pdvbdev in
dvb_register_device) could point to memory that had been freed in
dvb_register_device. Thereafter, this pointer is transferred to
kref_put and triggering a use-after-free.
In the Linux kernel, the following vulnerability has been resolved:
SUNRPC: fix a memleak in gss_import_v2_context
The ctx->mech_used.data allocated by kmemdup is not freed in neither
gss_import_v2_context nor it only caller gss_krb5_import_sec_context,
which frees ctx on error.
Thus, this patch reform the last call of gss_import_v2_context to the
gss_krb5_import_ctx_v2, preventing the memleak while keepping the return
formation.
In the Linux kernel, the following vulnerability has been resolved:
tun: limit printing rate when illegal packet received by tun dev
vhost_worker will call tun call backs to receive packets. If too many
illegal packets arrives, tun_do_read will keep dumping packet contents.
When console is enabled, it will costs much more cpu time to dump
packet and soft lockup will be detected.
net_ratelimit mechanism can be used to limit the dumping rate.
PID: 33036 TASK: ffff949da6f20000 CPU: 23 COMMAND: "vhost-32980"
#0 [fffffe00003fce50] crash_nmi_callback at ffffffff89249253
#1 [fffffe00003fce58] nmi_handle at ffffffff89225fa3
#2 [fffffe00003fceb0] default_do_nmi at ffffffff8922642e
#3 [fffffe00003fced0] do_nmi at ffffffff8922660d
#4 [fffffe00003fcef0] end_repeat_nmi at ffffffff89c01663
[exception RIP: io_serial_in+20]
RIP: ffffffff89792594 RSP: ffffa655314979e8 RFLAGS: 00000002
RAX: ffffffff89792500 RBX: ffffffff8af428a0 RCX: 0000000000000000
RDX: 00000000000003fd RSI: 0000000000000005 RDI: ffffffff8af428a0
RBP: 0000000000002710 R8: 0000000000000004 R9: 000000000000000f
R10: 0000000000000000 R11: ffffffff8acbf64f R12: 0000000000000020
R13: ffffffff8acbf698 R14: 0000000000000058 R15: 0000000000000000
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#5 [ffffa655314979e8] io_serial_in at ffffffff89792594
#6 [ffffa655314979e8] wait_for_xmitr at ffffffff89793470
#7 [ffffa65531497a08] serial8250_console_putchar at ffffffff897934f6
#8 [ffffa65531497a20] uart_console_write at ffffffff8978b605
#9 [ffffa65531497a48] serial8250_console_write at ffffffff89796558
#10 [ffffa65531497ac8] console_unlock at ffffffff89316124
#11 [ffffa65531497b10] vprintk_emit at ffffffff89317c07
#12 [ffffa65531497b68] printk at ffffffff89318306
#13 [ffffa65531497bc8] print_hex_dump at ffffffff89650765
#14 [ffffa65531497ca8] tun_do_read at ffffffffc0b06c27 [tun]
#15 [ffffa65531497d38] tun_recvmsg at ffffffffc0b06e34 [tun]
#16 [ffffa65531497d68] handle_rx at ffffffffc0c5d682 [vhost_net]
#17 [ffffa65531497ed0] vhost_worker at ffffffffc0c644dc [vhost]
#18 [ffffa65531497f10] kthread at ffffffff892d2e72
#19 [ffffa65531497f50] ret_from_fork at ffffffff89c0022f
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_ncm: Fix UAF ncm object at re-bind after usb ep transport error
When ncm function is working and then stop usb0 interface for link down,
eth_stop() is called. At this piont, accidentally if usb transport error
should happen in usb_ep_enable(), 'in_ep' and/or 'out_ep' may not be enabled.
After that, ncm_disable() is called to disable for ncm unbind
but gether_disconnect() is never called since 'in_ep' is not enabled.
As the result, ncm object is released in ncm unbind
but 'dev->port_usb' associated to 'ncm->port' is not NULL.
And when ncm bind again to recover netdev, ncm object is reallocated
but usb0 interface is already associated to previous released ncm object.
Therefore, once usb0 interface is up and eth_start_xmit() is called,
released ncm object is dereferrenced and it might cause use-after-free memory.
[function unlink via configfs]
usb0: eth_stop dev->port_usb=ffffff9b179c3200
--> error happens in usb_ep_enable().
NCM: ncm_disable: ncm=ffffff9b179c3200
--> no gether_disconnect() since ncm->port.in_ep->enabled is false.
NCM: ncm_unbind: ncm unbind ncm=ffffff9b179c3200
NCM: ncm_free: ncm free ncm=ffffff9b179c3200 <-- released ncm
[function link via configfs]
NCM: ncm_alloc: ncm alloc ncm=ffffff9ac4f8a000
NCM: ncm_bind: ncm bind ncm=ffffff9ac4f8a000
NCM: ncm_set_alt: ncm=ffffff9ac4f8a000 alt=0
usb0: eth_open dev->port_usb=ffffff9b179c3200 <-- previous released ncm
usb0: eth_start dev->port_usb=ffffff9b179c3200 <--
eth_start_xmit()
--> dev->wrap()
Unable to handle kernel paging request at virtual address dead00000000014f
This patch addresses the issue by checking if 'ncm->netdev' is not NULL at
ncm_disable() to call gether_disconnect() to deassociate 'dev->port_usb'.
It's more reasonable to check 'ncm->netdev' to call gether_connect/disconnect
rather than check 'ncm->port.in_ep->enabled' since it might not be enabled
but the gether connection might be established.
In the Linux kernel, the following vulnerability has been resolved:
serial/pmac_zilog: Remove flawed mitigation for rx irq flood
The mitigation was intended to stop the irq completely. That may be
better than a hard lock-up but it turns out that you get a crash anyway
if you're using pmac_zilog as a serial console:
ttyPZ0: pmz: rx irq flood !
BUG: spinlock recursion on CPU#0, swapper/0
That's because the pr_err() call in pmz_receive_chars() results in
pmz_console_write() attempting to lock a spinlock already locked in
pmz_interrupt(). With CONFIG_DEBUG_SPINLOCK=y, this produces a fatal
BUG splat. The spinlock in question is the one in struct uart_port.
Even when it's not fatal, the serial port rx function ceases to work.
Also, the iteration limit doesn't play nicely with QEMU, as can be
seen in the bug report linked below.
A web search for other reports of the error message "pmz: rx irq flood"
didn't produce anything. So I don't think this code is needed any more.
Remove it.
In the Linux kernel, the following vulnerability has been resolved:
serial: max310x: fix NULL pointer dereference in I2C instantiation
When trying to instantiate a max14830 device from userspace:
echo max14830 0x60 > /sys/bus/i2c/devices/i2c-2/new_device
we get the following error:
Unable to handle kernel NULL pointer dereference at virtual address...
...
Call trace:
max310x_i2c_probe+0x48/0x170 [max310x]
i2c_device_probe+0x150/0x2a0
...
Add check for validity of devtype to prevent the error, and abort probe
with a meaningful error message.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix OOB in nilfs_set_de_type
The size of the nilfs_type_by_mode array in the fs/nilfs2/dir.c file is
defined as "S_IFMT >> S_SHIFT", but the nilfs_set_de_type() function,
which uses this array, specifies the index to read from the array in the
same way as "(mode & S_IFMT) >> S_SHIFT".
static void nilfs_set_de_type(struct nilfs_dir_entry *de, struct inode
*inode)
{
umode_t mode = inode->i_mode;
de->file_type = nilfs_type_by_mode[(mode & S_IFMT)>>S_SHIFT]; // oob
}
However, when the index is determined this way, an out-of-bounds (OOB)
error occurs by referring to an index that is 1 larger than the array size
when the condition "mode & S_IFMT == S_IFMT" is satisfied. Therefore, a
patch to resize the nilfs_type_by_mode array should be applied to prevent
OOB errors.
In the Linux kernel, the following vulnerability has been resolved:
Squashfs: check the inode number is not the invalid value of zero
Syskiller has produced an out of bounds access in fill_meta_index().
That out of bounds access is ultimately caused because the inode
has an inode number with the invalid value of zero, which was not checked.
The reason this causes the out of bounds access is due to following
sequence of events:
1. Fill_meta_index() is called to allocate (via empty_meta_index())
and fill a metadata index. It however suffers a data read error
and aborts, invalidating the newly returned empty metadata index.
It does this by setting the inode number of the index to zero,
which means unused (zero is not a valid inode number).
2. When fill_meta_index() is subsequently called again on another
read operation, locate_meta_index() returns the previous index
because it matches the inode number of 0. Because this index
has been returned it is expected to have been filled, and because
it hasn't been, an out of bounds access is performed.
This patch adds a sanity check which checks that the inode number
is not zero when the inode is created and returns -EINVAL if it is.
[phillip@squashfs.org.uk: whitespace fix]
In the Linux kernel, the following vulnerability has been resolved:
nfs: fix UAF in direct writes
In production we have been hitting the following warning consistently
------------[ cut here ]------------
refcount_t: underflow; use-after-free.
WARNING: CPU: 17 PID: 1800359 at lib/refcount.c:28 refcount_warn_saturate+0x9c/0xe0
Workqueue: nfsiod nfs_direct_write_schedule_work [nfs]
RIP: 0010:refcount_warn_saturate+0x9c/0xe0
PKRU: 55555554
Call Trace:
<TASK>
? __warn+0x9f/0x130
? refcount_warn_saturate+0x9c/0xe0
? report_bug+0xcc/0x150
? handle_bug+0x3d/0x70
? exc_invalid_op+0x16/0x40
? asm_exc_invalid_op+0x16/0x20
? refcount_warn_saturate+0x9c/0xe0
nfs_direct_write_schedule_work+0x237/0x250 [nfs]
process_one_work+0x12f/0x4a0
worker_thread+0x14e/0x3b0
? ZSTD_getCParams_internal+0x220/0x220
kthread+0xdc/0x120
? __btf_name_valid+0xa0/0xa0
ret_from_fork+0x1f/0x30
This is because we're completing the nfs_direct_request twice in a row.
The source of this is when we have our commit requests to submit, we
process them and send them off, and then in the completion path for the
commit requests we have
if (nfs_commit_end(cinfo.mds))
nfs_direct_write_complete(dreq);
However since we're submitting asynchronous requests we sometimes have
one that completes before we submit the next one, so we end up calling
complete on the nfs_direct_request twice.
The only other place we use nfs_generic_commit_list() is in
__nfs_commit_inode, which wraps this call in a
nfs_commit_begin();
nfs_commit_end();
Which is a common pattern for this style of completion handling, one
that is also repeated in the direct code with get_dreq()/put_dreq()
calls around where we process events as well as in the completion paths.
Fix this by using the same pattern for the commit requests.
Before with my 200 node rocksdb stress running this warning would pop
every 10ish minutes. With my patch the stress test has been running for
several hours without popping.