A stored cross-site scripting (XSS) vulnerability in Alkacon OpenCMS v17.0 allows attackers to execute arbitrary web scripts or HTML via a crafted payload injected into the author parameter under the Create/Modify article function.
Dify is an open-source LLM app development platform. Prior to version 0.6.12, a vulnerability was identified in the DIFY where normal users can enable or disable apps through the API, even though the web UI button for this action is disabled and normal users are not permitted to make such changes. This access control flaw allows non-admin users to make unauthorized changes, which can disrupt the functionality and availability of the APPS. This issue has been patched in version 0.6.12. A workaround for this vulnerability involves updating the API access control mechanisms to enforce stricter user role permissions and implementing role-based access controls (RBAC) to ensure that only users with admin privileges can send enable or disable requests for apps.
In the Linux kernel, the following vulnerability has been resolved:
HSI: ssi_protocol: Fix use after free vulnerability in ssi_protocol Driver Due to Race Condition
In the ssi_protocol_probe() function, &ssi->work is bound with
ssip_xmit_work(), In ssip_pn_setup(), the ssip_pn_xmit() function
within the ssip_pn_ops structure is capable of starting the
work.
If we remove the module which will call ssi_protocol_remove()
to make a cleanup, it will free ssi through kfree(ssi),
while the work mentioned above will be used. The sequence
of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| ssip_xmit_work
ssi_protocol_remove |
kfree(ssi); |
| struct hsi_client *cl = ssi->cl;
| // use ssi
Fix it by ensuring that the work is canceled before proceeding
with the cleanup in ssi_protocol_remove().
TOTOLINK X18 v9.1.0cu.2024_B20220329 has an unauthorized arbitrary command execution in the enable parameter' of the sub_41105C function of cstecgi .cgi.
A vulnerability was found in baseweb JSite 1.0. It has been declared as problematic. Affected by this vulnerability is an unknown functionality of the file /a/sys/user/save. The manipulation of the argument Name leads to cross site scripting. The attack can be launched remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in PbootCMS 3.2.5. It has been classified as problematic. Affected is an unknown function of the component Image Handler. The manipulation leads to server-side request forgery. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used.
A vulnerability was found in Tenda AC15 up to 15.03.05.19 and classified as critical. This issue affects the function fromSetWirelessRepeat of the file /goform/WifiExtraSet. The manipulation of the argument mac leads to buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used.
In the Linux kernel, the following vulnerability has been resolved:
clk: samsung: Fix UBSAN panic in samsung_clk_init()
With UBSAN_ARRAY_BOUNDS=y, I'm hitting the below panic due to
dereferencing `ctx->clk_data.hws` before setting
`ctx->clk_data.num = nr_clks`. Move that up to fix the crash.
UBSAN: array index out of bounds: 00000000f2005512 [#1] PREEMPT SMP
<snip>
Call trace:
samsung_clk_init+0x110/0x124 (P)
samsung_clk_init+0x48/0x124 (L)
samsung_cmu_register_one+0x3c/0xa0
exynos_arm64_register_cmu+0x54/0x64
__gs101_cmu_top_of_clk_init_declare+0x28/0x60
...
In the Linux kernel, the following vulnerability has been resolved:
jfs: fix slab-out-of-bounds read in ea_get()
During the "size_check" label in ea_get(), the code checks if the extended
attribute list (xattr) size matches ea_size. If not, it logs
"ea_get: invalid extended attribute" and calls print_hex_dump().
Here, EALIST_SIZE(ea_buf->xattr) returns 4110417968, which exceeds
INT_MAX (2,147,483,647). Then ea_size is clamped:
int size = clamp_t(int, ea_size, 0, EALIST_SIZE(ea_buf->xattr));
Although clamp_t aims to bound ea_size between 0 and 4110417968, the upper
limit is treated as an int, causing an overflow above 2^31 - 1. This leads
"size" to wrap around and become negative (-184549328).
The "size" is then passed to print_hex_dump() (called "len" in
print_hex_dump()), it is passed as type size_t (an unsigned
type), this is then stored inside a variable called
"int remaining", which is then assigned to "int linelen" which
is then passed to hex_dump_to_buffer(). In print_hex_dump()
the for loop, iterates through 0 to len-1, where len is
18446744073525002176, calling hex_dump_to_buffer()
on each iteration:
for (i = 0; i < len; i += rowsize) {
linelen = min(remaining, rowsize);
remaining -= rowsize;
hex_dump_to_buffer(ptr + i, linelen, rowsize, groupsize,
linebuf, sizeof(linebuf), ascii);
...
}
The expected stopping condition (i < len) is effectively broken
since len is corrupted and very large. This eventually leads to
the "ptr+i" being passed to hex_dump_to_buffer() to get closer
to the end of the actual bounds of "ptr", eventually an out of
bounds access is done in hex_dump_to_buffer() in the following
for loop:
for (j = 0; j < len; j++) {
if (linebuflen < lx + 2)
goto overflow2;
ch = ptr[j];
...
}
To fix this we should validate "EALIST_SIZE(ea_buf->xattr)"
before it is utilised.
In the Linux kernel, the following vulnerability has been resolved:
staging: gpib: Fix cb7210 pcmcia Oops
The pcmcia_driver struct was still only using the old .name
initialization in the drv field. This led to a NULL pointer
deref Oops in strcmp called from pcmcia_register_driver.
Initialize the pcmcia_driver struct name field.