In the Linux kernel, the following vulnerability has been resolved:
pinctrl: at91: Fix possible out-of-boundary access
at91_gpio_probe() doesn't check that given OF alias is not available or
something went wrong when trying to get it. This might have consequences
when accessing gpio_chips array with that value as an index. Note, that
BUG() can be compiled out and hence won't actually perform the required
checks.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: fix node corruption in ar->arvifs list
In current WLAN recovery code flow, ath11k_core_halt() only
reinitializes the "arvifs" list head. This will cause the
list node immediately following the list head to become an
invalid list node. Because the prev of that node still points
to the list head "arvifs", but the next of the list head "arvifs"
no longer points to that list node.
When a WLAN recovery occurs during the execution of a vif
removal, and it happens before the spin_lock_bh(&ar->data_lock)
in ath11k_mac_op_remove_interface(), list_del() will detect the
previously mentioned situation, thereby triggering a kernel panic.
The fix is to remove and reinitialize all vif list nodes from the
list head "arvifs" during WLAN halt. The reinitialization is to make
the list nodes valid, ensuring that the list_del() in
ath11k_mac_op_remove_interface() can execute normally.
Call trace:
__list_del_entry_valid_or_report+0xb8/0xd0
ath11k_mac_op_remove_interface+0xb0/0x27c [ath11k]
drv_remove_interface+0x48/0x194 [mac80211]
ieee80211_do_stop+0x6e0/0x844 [mac80211]
ieee80211_stop+0x44/0x17c [mac80211]
__dev_close_many+0xac/0x150
__dev_change_flags+0x194/0x234
dev_change_flags+0x24/0x6c
devinet_ioctl+0x3a0/0x670
inet_ioctl+0x200/0x248
sock_do_ioctl+0x60/0x118
sock_ioctl+0x274/0x35c
__arm64_sys_ioctl+0xac/0xf0
invoke_syscall+0x48/0x114
...
Tested-on: QCA6698AQ hw2.1 PCI WLAN.HSP.1.1-04591-QCAHSPSWPL_V1_V2_SILICONZ_IOE-1
In the Linux kernel, the following vulnerability has been resolved:
mtd: nand: ecc-mxic: Fix use of uninitialized variable ret
If ctx->steps is zero, the loop processing ECC steps is skipped,
and the variable ret remains uninitialized. It is later checked
and returned, which leads to undefined behavior and may cause
unpredictable results in user space or kernel crashes.
This scenario can be triggered in edge cases such as misconfigured
geometry, ECC engine misuse, or if ctx->steps is not validated
after initialization.
Initialize ret to zero before the loop to ensure correct and safe
behavior regardless of the ctx->steps value.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Avoid __bpf_prog_ret0_warn when jit fails
syzkaller reported an issue:
WARNING: CPU: 3 PID: 217 at kernel/bpf/core.c:2357 __bpf_prog_ret0_warn+0xa/0x20 kernel/bpf/core.c:2357
Modules linked in:
CPU: 3 UID: 0 PID: 217 Comm: kworker/u32:6 Not tainted 6.15.0-rc4-syzkaller-00040-g8bac8898fe39
RIP: 0010:__bpf_prog_ret0_warn+0xa/0x20 kernel/bpf/core.c:2357
Call Trace:
<TASK>
bpf_dispatcher_nop_func include/linux/bpf.h:1316 [inline]
__bpf_prog_run include/linux/filter.h:718 [inline]
bpf_prog_run include/linux/filter.h:725 [inline]
cls_bpf_classify+0x74a/0x1110 net/sched/cls_bpf.c:105
...
When creating bpf program, 'fp->jit_requested' depends on bpf_jit_enable.
This issue is triggered because of CONFIG_BPF_JIT_ALWAYS_ON is not set
and bpf_jit_enable is set to 1, causing the arch to attempt JIT the prog,
but jit failed due to FAULT_INJECTION. As a result, incorrectly
treats the program as valid, when the program runs it calls
`__bpf_prog_ret0_warn` and triggers the WARN_ON_ONCE(1).
In the Linux kernel, the following vulnerability has been resolved:
kernfs: Relax constraint in draining guard
The active reference lifecycle provides the break/unbreak mechanism but
the active reference is not truly active after unbreak -- callers don't
use it afterwards but it's important for proper pairing of kn->active
counting. Assuming this mechanism is in place, the WARN check in
kernfs_should_drain_open_files() is too sensitive -- it may transiently
catch those (rightful) callers between
kernfs_unbreak_active_protection() and kernfs_put_active() as found out by Chen
Ridong:
kernfs_remove_by_name_ns kernfs_get_active // active=1
__kernfs_remove // active=0x80000002
kernfs_drain ...
wait_event
//waiting (active == 0x80000001)
kernfs_break_active_protection
// active = 0x80000001
// continue
kernfs_unbreak_active_protection
// active = 0x80000002
...
kernfs_should_drain_open_files
// warning occurs
kernfs_put_active
To avoid the false positives (mind panic_on_warn) remove the check altogether.
(This is meant as quick fix, I think active reference break/unbreak may be
simplified with larger rework.)
In the Linux kernel, the following vulnerability has been resolved:
net: tipc: fix refcount warning in tipc_aead_encrypt
syzbot reported a refcount warning [1] caused by calling get_net() on
a network namespace that is being destroyed (refcount=0). This happens
when a TIPC discovery timer fires during network namespace cleanup.
The recently added get_net() call in commit e279024617134 ("net/tipc:
fix slab-use-after-free Read in tipc_aead_encrypt_done") attempts to
hold a reference to the network namespace. However, if the namespace
is already being destroyed, its refcount might be zero, leading to the
use-after-free warning.
Replace get_net() with maybe_get_net(), which safely checks if the
refcount is non-zero before incrementing it. If the namespace is being
destroyed, return -ENODEV early, after releasing the bearer reference.
[1]: https://lore.kernel.org/all/68342b55.a70a0220.253bc2.0091.GAE@google.com/T/#m12019cf9ae77e1954f666914640efa36d52704a2
In the Linux kernel, the following vulnerability has been resolved:
phy: qcom-qmp-usb: Fix an NULL vs IS_ERR() bug
The qmp_usb_iomap() helper function currently returns the raw result of
devm_ioremap() for non-exclusive mappings. Since devm_ioremap() may return
a NULL pointer and the caller only checks error pointers with IS_ERR(),
NULL could bypass the check and lead to an invalid dereference.
Fix the issue by checking if devm_ioremap() returns NULL. When it does,
qmp_usb_iomap() now returns an error pointer via IOMEM_ERR_PTR(-ENOMEM),
ensuring safe and consistent error handling.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd9335: Fix missing free of regulator supplies
Driver gets and enables all regulator supplies in probe path
(wcd9335_parse_dt() and wcd9335_power_on_reset()), but does not cleanup
in final error paths and in unbind (missing remove() callback). This
leads to leaked memory and unbalanced regulator enable count during
probe errors or unbind.
Fix this by converting entire code into devm_regulator_bulk_get_enable()
which also greatly simplifies the code.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: handle csum tree error with rescue=ibadroots correctly
[BUG]
There is syzbot based reproducer that can crash the kernel, with the
following call trace: (With some debug output added)
DEBUG: rescue=ibadroots parsed
BTRFS: device fsid 14d642db-7b15-43e4-81e6-4b8fac6a25f8 devid 1 transid 8 /dev/loop0 (7:0) scanned by repro (1010)
BTRFS info (device loop0): first mount of filesystem 14d642db-7b15-43e4-81e6-4b8fac6a25f8
BTRFS info (device loop0): using blake2b (blake2b-256-generic) checksum algorithm
BTRFS info (device loop0): using free-space-tree
BTRFS warning (device loop0): checksum verify failed on logical 5312512 mirror 1 wanted 0xb043382657aede36608fd3386d6b001692ff406164733d94e2d9a180412c6003 found 0x810ceb2bacb7f0f9eb2bf3b2b15c02af867cb35ad450898169f3b1f0bd818651 level 0
DEBUG: read tree root path failed for tree csum, ret=-5
BTRFS warning (device loop0): checksum verify failed on logical 5328896 mirror 1 wanted 0x51be4e8b303da58e6340226815b70e3a93592dac3f30dd510c7517454de8567a found 0x51be4e8b303da58e634022a315b70e3a93592dac3f30dd510c7517454de8567a level 0
BTRFS warning (device loop0): checksum verify failed on logical 5292032 mirror 1 wanted 0x1924ccd683be9efc2fa98582ef58760e3848e9043db8649ee382681e220cdee4 found 0x0cb6184f6e8799d9f8cb335dccd1d1832da1071d12290dab3b85b587ecacca6e level 0
process 'repro' launched './file2' with NULL argv: empty string added
DEBUG: no csum root, idatacsums=0 ibadroots=134217728
Oops: general protection fault, probably for non-canonical address 0xdffffc0000000041: 0000 [#1] SMP KASAN NOPTI
KASAN: null-ptr-deref in range [0x0000000000000208-0x000000000000020f]
CPU: 5 UID: 0 PID: 1010 Comm: repro Tainted: G OE 6.15.0-custom+ #249 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS unknown 02/02/2022
RIP: 0010:btrfs_lookup_csum+0x93/0x3d0 [btrfs]
Call Trace:
<TASK>
btrfs_lookup_bio_sums+0x47a/0xdf0 [btrfs]
btrfs_submit_bbio+0x43e/0x1a80 [btrfs]
submit_one_bio+0xde/0x160 [btrfs]
btrfs_readahead+0x498/0x6a0 [btrfs]
read_pages+0x1c3/0xb20
page_cache_ra_order+0x4b5/0xc20
filemap_get_pages+0x2d3/0x19e0
filemap_read+0x314/0xde0
__kernel_read+0x35b/0x900
bprm_execve+0x62e/0x1140
do_execveat_common.isra.0+0x3fc/0x520
__x64_sys_execveat+0xdc/0x130
do_syscall_64+0x54/0x1d0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
---[ end trace 0000000000000000 ]---
[CAUSE]
Firstly the fs has a corrupted csum tree root, thus to mount the fs we
have to go "ro,rescue=ibadroots" mount option.
Normally with that mount option, a bad csum tree root should set
BTRFS_FS_STATE_NO_DATA_CSUMS flag, so that any future data read will
ignore csum search.
But in this particular case, we have the following call trace that
caused NULL csum root, but not setting BTRFS_FS_STATE_NO_DATA_CSUMS:
load_global_roots_objectid():
ret = btrfs_search_slot();
/* Succeeded */
btrfs_item_key_to_cpu()
found = true;
/* We found the root item for csum tree. */
root = read_tree_root_path();
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
/*
* Since we have rescue=ibadroots mount option,
* @ret is still 0.
*/
break;
if (!found || ret) {
/* @found is true, @ret is 0, error handling for csum
* tree is skipped.
*/
}
This means we completely skipped to set BTRFS_FS_STATE_NO_DATA_CSUMS if
the csum tree is corrupted, which results unexpected later csum lookup.
[FIX]
If read_tree_root_path() failed, always populate @ret to the error
number.
As at the end of the function, we need @ret to determine if we need to
do the extra error handling for csum tree.