In the Linux kernel, the following vulnerability has been resolved:
epoll: be better about file lifetimes
epoll can call out to vfs_poll() with a file pointer that may race with
the last 'fput()'. That would make f_count go down to zero, and while
the ep->mtx locking means that the resulting file pointer tear-down will
be blocked until the poll returns, it means that f_count is already
dead, and any use of it won't actually get a reference to the file any
more: it's dead regardless.
Make sure we have a valid ref on the file pointer before we call down to
vfs_poll() from the epoll routines.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential hang in nilfs_detach_log_writer()
Syzbot has reported a potential hang in nilfs_detach_log_writer() called
during nilfs2 unmount.
Analysis revealed that this is because nilfs_segctor_sync(), which
synchronizes with the log writer thread, can be called after
nilfs_segctor_destroy() terminates that thread, as shown in the call trace
below:
nilfs_detach_log_writer
nilfs_segctor_destroy
nilfs_segctor_kill_thread --> Shut down log writer thread
flush_work
nilfs_iput_work_func
nilfs_dispose_list
iput
nilfs_evict_inode
nilfs_transaction_commit
nilfs_construct_segment (if inode needs sync)
nilfs_segctor_sync --> Attempt to synchronize with
log writer thread
*** DEADLOCK ***
Fix this issue by changing nilfs_segctor_sync() so that the log writer
thread returns normally without synchronizing after it terminates, and by
forcing tasks that are already waiting to complete once after the thread
terminates.
The skipped inode metadata flushout will then be processed together in the
subsequent cleanup work in nilfs_segctor_destroy().
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix division by zero in setup_dsc_config
When slice_height is 0, the division by slice_height in the calculation
of the number of slices will cause a division by zero driver crash. This
leaves the kernel in a state that requires a reboot. This patch adds a
check to avoid the division by zero.
The stack trace below is for the 6.8.4 Kernel. I reproduced the issue on
a Z16 Gen 2 Lenovo Thinkpad with a Apple Studio Display monitor
connected via Thunderbolt. The amdgpu driver crashed with this exception
when I rebooted the system with the monitor connected.
kernel: ? die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434 arch/x86/kernel/dumpstack.c:447)
kernel: ? do_trap (arch/x86/kernel/traps.c:113 arch/x86/kernel/traps.c:154)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? do_error_trap (./arch/x86/include/asm/traps.h:58 arch/x86/kernel/traps.c:175)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? exc_divide_error (arch/x86/kernel/traps.c:194 (discriminator 2))
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: ? asm_exc_divide_error (./arch/x86/include/asm/idtentry.h:548)
kernel: ? setup_dsc_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1053) amdgpu
kernel: dc_dsc_compute_config (drivers/gpu/drm/amd/amdgpu/../display/dc/dsc/dc_dsc.c:1109) amdgpu
After applying this patch, the driver no longer crashes when the monitor
is connected and the system is rebooted. I believe this is the same
issue reported for 3113.
In the Linux kernel, the following vulnerability has been resolved:
fs/9p: only translate RWX permissions for plain 9P2000
Garbage in plain 9P2000's perm bits is allowed through, which causes it
to be able to set (among others) the suid bit. This was presumably not
the intent since the unix extended bits are handled explicitly and
conditionally on .u.
In the Linux kernel, the following vulnerability has been resolved:
firewire: ohci: mask bus reset interrupts between ISR and bottom half
In the FireWire OHCI interrupt handler, if a bus reset interrupt has
occurred, mask bus reset interrupts until bus_reset_work has serviced and
cleared the interrupt.
Normally, we always leave bus reset interrupts masked. We infer the bus
reset from the self-ID interrupt that happens shortly thereafter. A
scenario where we unmask bus reset interrupts was introduced in 2008 in
a007bb857e0b26f5d8b73c2ff90782d9c0972620: If
OHCI_PARAM_DEBUG_BUSRESETS (8) is set in the debug parameter bitmask, we
will unmask bus reset interrupts so we can log them.
irq_handler logs the bus reset interrupt. However, we can't clear the bus
reset event flag in irq_handler, because we won't service the event until
later. irq_handler exits with the event flag still set. If the
corresponding interrupt is still unmasked, the first bus reset will
usually freeze the system due to irq_handler being called again each
time it exits. This freeze can be reproduced by loading firewire_ohci
with "modprobe firewire_ohci debug=-1" (to enable all debugging output).
Apparently there are also some cases where bus_reset_work will get called
soon enough to clear the event, and operation will continue normally.
This freeze was first reported a few months after a007bb85 was committed,
but until now it was never fixed. The debug level could safely be set
to -1 through sysfs after the module was loaded, but this would be
ineffectual in logging bus reset interrupts since they were only
unmasked during initialization.
irq_handler will now leave the event flag set but mask bus reset
interrupts, so irq_handler won't be called again and there will be no
freeze. If OHCI_PARAM_DEBUG_BUSRESETS is enabled, bus_reset_work will
unmask the interrupt after servicing the event, so future interrupts
will be caught as desired.
As a side effect to this change, OHCI_PARAM_DEBUG_BUSRESETS can now be
enabled through sysfs in addition to during initial module loading.
However, when enabled through sysfs, logging of bus reset interrupts will
be effective only starting with the second bus reset, after
bus_reset_work has executed.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Move NPIV's transport unregistration to after resource clean up
There are cases after NPIV deletion where the fabric switch still believes
the NPIV is logged into the fabric. This occurs when a vport is
unregistered before the Remove All DA_ID CT and LOGO ELS are sent to the
fabric.
Currently fc_remove_host(), which calls dev_loss_tmo for all D_IDs including
the fabric D_ID, removes the last ndlp reference and frees the ndlp rport
object. This sometimes causes the race condition where the final DA_ID and
LOGO are skipped from being sent to the fabric switch.
Fix by moving the fc_remove_host() and scsi_remove_host() calls after DA_ID
and LOGO are sent.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: guard against invalid STA ID on removal
Guard against invalid station IDs in iwl_mvm_mld_rm_sta_id as that would
result in out-of-bounds array accesses. This prevents issues should the
driver get into a bad state during error handling.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: read txq->read_ptr under lock
If we read txq->read_ptr without lock, we can read the same
value twice, then obtain the lock, and reclaim from there
to two different places, but crucially reclaim the same
entry twice, resulting in the WARN_ONCE() a little later.
Fix that by reading txq->read_ptr under lock.
In the Linux kernel, the following vulnerability has been resolved:
fs/9p: fix uninitialized values during inode evict
If an iget fails due to not being able to retrieve information
from the server then the inode structure is only partially
initialized. When the inode gets evicted, references to
uninitialized structures (like fscache cookies) were being
made.
This patch checks for a bad_inode before doing anything other
than clearing the inode from the cache. Since the inode is
bad, it shouldn't have any state associated with it that needs
to be written back (and there really isn't a way to complete
those anyways).
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock.