In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to do sanity check on block address in f2fs_do_zero_range()
As Yanming reported in bugzilla:
https://bugzilla.kernel.org/show_bug.cgi?id=215894
I have encountered a bug in F2FS file system in kernel v5.17.
I have uploaded the system call sequence as case.c, and a fuzzed image can
be found in google net disk
The kernel should enable CONFIG_KASAN=y and CONFIG_KASAN_INLINE=y. You can
reproduce the bug by running the following commands:
kernel BUG at fs/f2fs/segment.c:2291!
Call Trace:
f2fs_invalidate_blocks+0x193/0x2d0
f2fs_fallocate+0x2593/0x4a70
vfs_fallocate+0x2a5/0xac0
ksys_fallocate+0x35/0x70
__x64_sys_fallocate+0x8e/0xf0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
The root cause is, after image was fuzzed, block mapping info in inode
will be inconsistent with SIT table, so in f2fs_fallocate(), it will cause
panic when updating SIT with invalid blkaddr.
Let's fix the issue by adding sanity check on block address before updating
SIT table with it.
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix a data-race in unix_dgram_peer_wake_me().
unix_dgram_poll() calls unix_dgram_peer_wake_me() without `other`'s
lock held and check if its receive queue is full. Here we need to
use unix_recvq_full_lockless() instead of unix_recvq_full(), otherwise
KCSAN will report a data-race.
In the Linux kernel, the following vulnerability has been resolved:
drm/etnaviv: check for reaped mapping in etnaviv_iommu_unmap_gem
When the mapping is already reaped the unmap must be a no-op, as we
would otherwise try to remove the mapping twice, corrupting the involved
data structures.
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: bgmac: Fix refcount leak in bcma_mdio_mii_register
of_get_child_by_name() returns a node pointer with refcount
incremented, we should use of_node_put() on it when not need anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu: fix possible null-ptr-deref in arm_smmu_device_probe()
It will cause null-ptr-deref when using 'res', if platform_get_resource()
returns NULL, so move using 'res' after devm_ioremap_resource() that
will check it to avoid null-ptr-deref.
And use devm_platform_get_and_ioremap_resource() to simplify code.
In the Linux kernel, the following vulnerability has been resolved:
tcp: add accessors to read/set tp->snd_cwnd
We had various bugs over the years with code
breaking the assumption that tp->snd_cwnd is greater
than zero.
Lately, syzbot reported the WARN_ON_ONCE(!tp->prior_cwnd) added
in commit 8b8a321ff72c ("tcp: fix zero cwnd in tcp_cwnd_reduction")
can trigger, and without a repro we would have to spend
considerable time finding the bug.
Instead of complaining too late, we want to catch where
and when tp->snd_cwnd is set to an illegal value.
In the Linux kernel, the following vulnerability has been resolved:
bcache: avoid journal no-space deadlock by reserving 1 journal bucket
The journal no-space deadlock was reported time to time. Such deadlock
can happen in the following situation.
When all journal buckets are fully filled by active jset with heavy
write I/O load, the cache set registration (after a reboot) will load
all active jsets and inserting them into the btree again (which is
called journal replay). If a journaled bkey is inserted into a btree
node and results btree node split, new journal request might be
triggered. For example, the btree grows one more level after the node
split, then the root node record in cache device super block will be
upgrade by bch_journal_meta() from bch_btree_set_root(). But there is no
space in journal buckets, the journal replay has to wait for new journal
bucket to be reclaimed after at least one journal bucket replayed. This
is one example that how the journal no-space deadlock happens.
The solution to avoid the deadlock is to reserve 1 journal bucket in
run time, and only permit the reserved journal bucket to be used during
cache set registration procedure for things like journal replay. Then
the journal space will never be fully filled, there is no chance for
journal no-space deadlock to happen anymore.
This patch adds a new member "bool do_reserve" in struct journal, it is
inititalized to 0 (false) when struct journal is allocated, and set to
1 (true) by bch_journal_space_reserve() when all initialization done in
run_cache_set(). In the run time when journal_reclaim() tries to
allocate a new journal bucket, free_journal_buckets() is called to check
whether there are enough free journal buckets to use. If there is only
1 free journal bucket and journal->do_reserve is 1 (true), the last
bucket is reserved and free_journal_buckets() will return 0 to indicate
no free journal bucket. Then journal_reclaim() will give up, and try
next time to see whetheer there is free journal bucket to allocate. By
this method, there is always 1 jouranl bucket reserved in run time.
During the cache set registration, journal->do_reserve is 0 (false), so
the reserved journal bucket can be used to avoid the no-space deadlock.
In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Don't hold the layoutget locks across multiple RPC calls
When doing layoutget as part of the open() compound, we have to be
careful to release the layout locks before we can call any further RPC
calls, such as setattr(). The reason is that those calls could trigger
a recall, which could deadlock.