In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_fs: Remove WARN_ON in functionfs_bind
This commit addresses an issue related to below kernel panic where
panic_on_warn is enabled. It is caused by the unnecessary use of WARN_ON
in functionsfs_bind, which easily leads to the following scenarios.
1.adb_write in adbd 2. UDC write via configfs
================= =====================
->usb_ffs_open_thread() ->UDC write
->open_functionfs() ->configfs_write_iter()
->adb_open() ->gadget_dev_desc_UDC_store()
->adb_write() ->usb_gadget_register_driver_owner
->driver_register()
->StartMonitor() ->bus_add_driver()
->adb_read() ->gadget_bind_driver()
<times-out without BIND event> ->configfs_composite_bind()
->usb_add_function()
->open_functionfs() ->ffs_func_bind()
->adb_open() ->functionfs_bind()
<ffs->state !=FFS_ACTIVE>
The adb_open, adb_read, and adb_write operations are invoked from the
daemon, but trying to bind the function is a process that is invoked by
UDC write through configfs, which opens up the possibility of a race
condition between the two paths. In this race scenario, the kernel panic
occurs due to the WARN_ON from functionfs_bind when panic_on_warn is
enabled. This commit fixes the kernel panic by removing the unnecessary
WARN_ON.
Kernel panic - not syncing: kernel: panic_on_warn set ...
[ 14.542395] Call trace:
[ 14.542464] ffs_func_bind+0x1c8/0x14a8
[ 14.542468] usb_add_function+0xcc/0x1f0
[ 14.542473] configfs_composite_bind+0x468/0x588
[ 14.542478] gadget_bind_driver+0x108/0x27c
[ 14.542483] really_probe+0x190/0x374
[ 14.542488] __driver_probe_device+0xa0/0x12c
[ 14.542492] driver_probe_device+0x3c/0x220
[ 14.542498] __driver_attach+0x11c/0x1fc
[ 14.542502] bus_for_each_dev+0x104/0x160
[ 14.542506] driver_attach+0x24/0x34
[ 14.542510] bus_add_driver+0x154/0x270
[ 14.542514] driver_register+0x68/0x104
[ 14.542518] usb_gadget_register_driver_owner+0x48/0xf4
[ 14.542523] gadget_dev_desc_UDC_store+0xf8/0x144
[ 14.542526] configfs_write_iter+0xf0/0x138
In the Linux kernel, the following vulnerability has been resolved:
misc: microchip: pci1xxxx: Resolve kernel panic during GPIO IRQ handling
Resolve kernel panic caused by improper handling of IRQs while
accessing GPIO values. This is done by replacing generic_handle_irq with
handle_nested_irq.
In the Linux kernel, the following vulnerability has been resolved:
topology: Keep the cpumask unchanged when printing cpumap
During fuzz testing, the following warning was discovered:
different return values (15 and 11) from vsnprintf("%*pbl
", ...)
test:keyward is WARNING in kvasprintf
WARNING: CPU: 55 PID: 1168477 at lib/kasprintf.c:30 kvasprintf+0x121/0x130
Call Trace:
kvasprintf+0x121/0x130
kasprintf+0xa6/0xe0
bitmap_print_to_buf+0x89/0x100
core_siblings_list_read+0x7e/0xb0
kernfs_file_read_iter+0x15b/0x270
new_sync_read+0x153/0x260
vfs_read+0x215/0x290
ksys_read+0xb9/0x160
do_syscall_64+0x56/0x100
entry_SYSCALL_64_after_hwframe+0x78/0xe2
The call trace shows that kvasprintf() reported this warning during the
printing of core_siblings_list. kvasprintf() has several steps:
(1) First, calculate the length of the resulting formatted string.
(2) Allocate a buffer based on the returned length.
(3) Then, perform the actual string formatting.
(4) Check whether the lengths of the formatted strings returned in
steps (1) and (2) are consistent.
If the core_cpumask is modified between steps (1) and (3), the lengths
obtained in these two steps may not match. Indeed our test includes cpu
hotplugging, which should modify core_cpumask while printing.
To fix this issue, cache the cpumask into a temporary variable before
calling cpumap_print_{list, cpumask}_to_buf(), to keep it unchanged
during the printing process.
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ti-ads8688: fix information leak in triggered buffer
The 'buffer' local array is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace.
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: rockchip_saradc: fix information leak in triggered buffer
The 'data' local struct is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the struct to zero before using it to avoid pushing
uninitialized information to userspace.
In the Linux kernel, the following vulnerability has been resolved:
iio: imu: kmx61: fix information leak in triggered buffer
The 'buffer' local array is used to push data to user space from a
triggered buffer, but it does not set values for inactive channels, as
it only uses iio_for_each_active_channel() to assign new values.
Initialize the array to zero before using it to avoid pushing
uninitialized information to userspace.
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: at91: call input_free_device() on allocated iio_dev
Current implementation of at91_ts_register() calls input_free_deivce()
on st->ts_input, however, the err label can be reached before the
allocated iio_dev is stored to st->ts_input. Thus call
input_free_device() on input instead of st->ts_input.
In the Linux kernel, the following vulnerability has been resolved:
ovl: support encoding fid from inode with no alias
Dmitry Safonov reported that a WARN_ON() assertion can be trigered by
userspace when calling inotify_show_fdinfo() for an overlayfs watched
inode, whose dentry aliases were discarded with drop_caches.
The WARN_ON() assertion in inotify_show_fdinfo() was removed, because
it is possible for encoding file handle to fail for other reason, but
the impact of failing to encode an overlayfs file handle goes beyond
this assertion.
As shown in the LTP test case mentioned in the link below, failure to
encode an overlayfs file handle from a non-aliased inode also leads to
failure to report an fid with FAN_DELETE_SELF fanotify events.
As Dmitry notes in his analyzis of the problem, ovl_encode_fh() fails
if it cannot find an alias for the inode, but this failure can be fixed.
ovl_encode_fh() seldom uses the alias and in the case of non-decodable
file handles, as is often the case with fanotify fid info,
ovl_encode_fh() never needs to use the alias to encode a file handle.
Defer finding an alias until it is actually needed so ovl_encode_fh()
will not fail in the common case of FAN_DELETE_SELF fanotify events.
In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd/pmc: Only disable IRQ1 wakeup where i8042 actually enabled it
Wakeup for IRQ1 should be disabled only in cases where i8042 had
actually enabled it, otherwise "wake_depth" for this IRQ will try to
drop below zero and there will be an unpleasant WARN() logged:
kernel: atkbd serio0: Disabling IRQ1 wakeup source to avoid platform firmware bug
kernel: ------------[ cut here ]------------
kernel: Unbalanced IRQ 1 wake disable
kernel: WARNING: CPU: 10 PID: 6431 at kernel/irq/manage.c:920 irq_set_irq_wake+0x147/0x1a0
The PMC driver uses DEFINE_SIMPLE_DEV_PM_OPS() to define its dev_pm_ops
which sets amd_pmc_suspend_handler() to the .suspend, .freeze, and
.poweroff handlers. i8042_pm_suspend(), however, is only set as
the .suspend handler.
Fix the issue by call PMC suspend handler only from the same set of
dev_pm_ops handlers as i8042_pm_suspend(), which currently means just
the .suspend handler.
To reproduce this issue try hibernating (S4) the machine after a fresh boot
without putting it into s2idle first.
[ij: edited the commit message.]
In the Linux kernel, the following vulnerability has been resolved:
afs: Fix the maximum cell name length
The kafs filesystem limits the maximum length of a cell to 256 bytes, but a
problem occurs if someone actually does that: kafs tries to create a
directory under /proc/net/afs/ with the name of the cell, but that fails
with a warning:
WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:405
because procfs limits the maximum filename length to 255.
However, the DNS limits the maximum lookup length and, by extension, the
maximum cell name, to 255 less two (length count and trailing NUL).
Fix this by limiting the maximum acceptable cellname length to 253. This
also allows us to be sure we can create the "/afs/.<cell>/" mountpoint too.
Further, split the YFS VL record cell name maximum to be the 256 allowed by
the protocol and ignore the record retrieved by YFSVL.GetCellName if it
exceeds 253.