Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.19.41  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: ALSA: hda: fix potential memleak in 'add_widget_node' As 'kobject_add' may allocated memory for 'kobject->name' when return error. And in this function, if call 'kobject_add' failed didn't free kobject. So call 'kobject_put' to recycling resources.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: mISDN: fix possible memory leak in mISDN_dsp_element_register() Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's bus_id string array"), the name of device is allocated dynamically, use put_device() to give up the reference, so that the name can be freed in kobject_cleanup() when the refcount is 0. The 'entry' is going to be freed in mISDN_dsp_dev_release(), so the kfree() is removed. list_del() is called in mISDN_dsp_dev_release(), so it need be initialized.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: ata: libata-transport: fix error handling in ata_tdev_add() In ata_tdev_add(), the return value of transport_add_device() is not checked. As a result, it causes null-ptr-deref while removing the module, because transport_remove_device() is called to remove the device that was not added. Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0 CPU: 13 PID: 13603 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc3+ #36 pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : device_del+0x48/0x3a0 lr : device_del+0x44/0x3a0 Call trace: device_del+0x48/0x3a0 attribute_container_class_device_del+0x28/0x40 transport_remove_classdev+0x60/0x7c attribute_container_device_trigger+0x118/0x120 transport_remove_device+0x20/0x30 ata_tdev_delete+0x24/0x50 [libata] ata_tlink_delete+0x40/0xa0 [libata] ata_tport_delete+0x2c/0x60 [libata] ata_port_detach+0x148/0x1b0 [libata] ata_pci_remove_one+0x50/0x80 [libata] ahci_remove_one+0x4c/0x8c [ahci] Fix this by checking and handling return value of transport_add_device() in ata_tdev_add(). In the error path, device_del() is called to delete the device which was added earlier in this function, and ata_tdev_free() is called to free ata_dev.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: ata: libata-transport: fix error handling in ata_tlink_add() In ata_tlink_add(), the return value of transport_add_device() is not checked. As a result, it causes null-ptr-deref while removing the module, because transport_remove_device() is called to remove the device that was not added. Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0 CPU: 33 PID: 13850 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc3+ #12 pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : device_del+0x48/0x39c lr : device_del+0x44/0x39c Call trace: device_del+0x48/0x39c attribute_container_class_device_del+0x28/0x40 transport_remove_classdev+0x60/0x7c attribute_container_device_trigger+0x118/0x120 transport_remove_device+0x20/0x30 ata_tlink_delete+0x88/0xb0 [libata] ata_tport_delete+0x2c/0x60 [libata] ata_port_detach+0x148/0x1b0 [libata] ata_pci_remove_one+0x50/0x80 [libata] ahci_remove_one+0x4c/0x8c [ahci] Fix this by checking and handling return value of transport_add_device() in ata_tlink_add().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: ata: libata-transport: fix error handling in ata_tport_add() In ata_tport_add(), the return value of transport_add_device() is not checked. As a result, it causes null-ptr-deref while removing the module, because transport_remove_device() is called to remove the device that was not added. Unable to handle kernel NULL pointer dereference at virtual address 00000000000000d0 CPU: 12 PID: 13605 Comm: rmmod Kdump: loaded Tainted: G W 6.1.0-rc3+ #8 pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : device_del+0x48/0x39c lr : device_del+0x44/0x39c Call trace: device_del+0x48/0x39c attribute_container_class_device_del+0x28/0x40 transport_remove_classdev+0x60/0x7c attribute_container_device_trigger+0x118/0x120 transport_remove_device+0x20/0x30 ata_tport_delete+0x34/0x60 [libata] ata_port_detach+0x148/0x1b0 [libata] ata_pci_remove_one+0x50/0x80 [libata] ahci_remove_one+0x4c/0x8c [ahci] Fix this by checking and handling return value of transport_add_device() in ata_tport_add().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: net/x25: Fix skb leak in x25_lapb_receive_frame() x25_lapb_receive_frame() using skb_copy() to get a private copy of skb, the new skb should be freed in the undersized/fragmented skb error handling path. Otherwise there is a memory leak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: drbd: use after free in drbd_create_device() The drbd_destroy_connection() frees the "connection" so use the _safe() iterator to prevent a use after free.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: net: ena: Fix error handling in ena_init() The ena_init() won't destroy workqueue created by create_singlethread_workqueue() when pci_register_driver() failed. Call destroy_workqueue() when pci_register_driver() failed to prevent the resource leak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: kcm: close race conditions on sk_receive_queue sk->sk_receive_queue is protected by skb queue lock, but for KCM sockets its RX path takes mux->rx_lock to protect more than just skb queue. However, kcm_recvmsg() still only grabs the skb queue lock, so race conditions still exist. We can teach kcm_recvmsg() to grab mux->rx_lock too but this would introduce a potential performance regression as struct kcm_mux can be shared by multiple KCM sockets. So we have to enforce skb queue lock in requeue_rx_msgs() and handle skb peek case carefully in kcm_wait_data(). Fortunately, skb_recv_datagram() already handles it nicely and is widely used by other sockets, we can just switch to skb_recv_datagram() after getting rid of the unnecessary sock lock in kcm_recvmsg() and kcm_splice_read(). Side note: SOCK_DONE is not used by KCM sockets, so it is safe to get rid of this check too. I ran the original syzbot reproducer for 30 min without seeing any issue.
CVSS Score
4.7
EPSS Score
0.0
Published
2025-05-01
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix wild-memory-access in register_synth_event() In register_synth_event(), if set_synth_event_print_fmt() failed, then both trace_remove_event_call() and unregister_trace_event() will be called, which means the trace_event_call will call __unregister_trace_event() twice. As the result, the second unregister will causes the wild-memory-access. register_synth_event set_synth_event_print_fmt failed trace_remove_event_call event_remove if call->event.funcs then __unregister_trace_event (first call) unregister_trace_event __unregister_trace_event (second call) Fix the bug by avoiding to call the second __unregister_trace_event() by checking if the first one is called. general protection fault, probably for non-canonical address 0xfbd59c0000000024: 0000 [#1] SMP KASAN PTI KASAN: maybe wild-memory-access in range [0xdead000000000120-0xdead000000000127] CPU: 0 PID: 3807 Comm: modprobe Not tainted 6.1.0-rc1-00186-g76f33a7eedb4 #299 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014 RIP: 0010:unregister_trace_event+0x6e/0x280 Code: 00 fc ff df 4c 89 ea 48 c1 ea 03 80 3c 02 00 0f 85 0e 02 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 63 08 4c 89 e2 48 c1 ea 03 <80> 3c 02 00 0f 85 e2 01 00 00 49 89 2c 24 48 85 ed 74 28 e8 7a 9b RSP: 0018:ffff88810413f370 EFLAGS: 00010a06 RAX: dffffc0000000000 RBX: ffff888105d050b0 RCX: 0000000000000000 RDX: 1bd5a00000000024 RSI: ffff888119e276e0 RDI: ffffffff835a8b20 RBP: dead000000000100 R08: 0000000000000000 R09: fffffbfff0913481 R10: ffffffff8489a407 R11: fffffbfff0913480 R12: dead000000000122 R13: ffff888105d050b8 R14: 0000000000000000 R15: ffff888105d05028 FS: 00007f7823e8d540(0000) GS:ffff888119e00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f7823e7ebec CR3: 000000010a058002 CR4: 0000000000330ef0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __create_synth_event+0x1e37/0x1eb0 create_or_delete_synth_event+0x110/0x250 synth_event_run_command+0x2f/0x110 test_gen_synth_cmd+0x170/0x2eb [synth_event_gen_test] synth_event_gen_test_init+0x76/0x9bc [synth_event_gen_test] do_one_initcall+0xdb/0x480 do_init_module+0x1cf/0x680 load_module+0x6a50/0x70a0 __do_sys_finit_module+0x12f/0x1c0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd
CVSS Score
7.1
EPSS Score
0.0
Published
2025-05-01


Contact Us

Shodan ® - All rights reserved