Vulnerabilities
Vulnerable Software
Linux:  >> Linux Kernel  >> 4.14.307  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to do sanity check on inline_dots inode As Wenqing reported in bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=215765 It will cause a kernel panic with steps: - mkdir mnt - mount tmp40.img mnt - ls mnt folio_mark_dirty+0x33/0x50 f2fs_add_regular_entry+0x541/0xad0 [f2fs] f2fs_add_dentry+0x6c/0xb0 [f2fs] f2fs_do_add_link+0x182/0x230 [f2fs] __recover_dot_dentries+0x2d6/0x470 [f2fs] f2fs_lookup+0x5af/0x6a0 [f2fs] __lookup_slow+0xac/0x200 lookup_slow+0x45/0x70 walk_component+0x16c/0x250 path_lookupat+0x8b/0x1f0 filename_lookup+0xef/0x250 user_path_at_empty+0x46/0x70 vfs_statx+0x98/0x190 __do_sys_newlstat+0x41/0x90 __x64_sys_newlstat+0x1a/0x30 do_syscall_64+0x37/0xb0 entry_SYSCALL_64_after_hwframe+0x44/0xae The root cause is for special file: e.g. character, block, fifo or socket file, f2fs doesn't assign address space operations pointer array for mapping->a_ops field, so, in a fuzzed image, if inline_dots flag was tagged in special file, during lookup(), when f2fs runs into __recover_dot_dentries(), it will cause NULL pointer access once f2fs_add_regular_entry() calls a_ops->set_dirty_page().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: Input: gpio-keys - cancel delayed work only in case of GPIO gpio_keys module can either accept gpios or interrupts. The module initializes delayed work in case of gpios only and is only used if debounce timer is not used, so make sure cancel_delayed_work_sync() is called only when its gpio-backed and debounce_use_hrtimer is false. This fixes the issue seen below when the gpio_keys module is unloaded and an interrupt pin is used instead of GPIO: [ 360.297569] ------------[ cut here ]------------ [ 360.302303] WARNING: CPU: 0 PID: 237 at kernel/workqueue.c:3066 __flush_work+0x414/0x470 [ 360.310531] Modules linked in: gpio_keys(-) [ 360.314797] CPU: 0 PID: 237 Comm: rmmod Not tainted 5.18.0-rc5-arm64-renesas-00116-g73636105874d-dirty #166 [ 360.324662] Hardware name: Renesas SMARC EVK based on r9a07g054l2 (DT) [ 360.331270] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 360.338318] pc : __flush_work+0x414/0x470 [ 360.342385] lr : __cancel_work_timer+0x140/0x1b0 [ 360.347065] sp : ffff80000a7fba00 [ 360.350423] x29: ffff80000a7fba00 x28: ffff000012b9c5c0 x27: 0000000000000000 [ 360.357664] x26: ffff80000a7fbb80 x25: ffff80000954d0a8 x24: 0000000000000001 [ 360.364904] x23: ffff800009757000 x22: 0000000000000000 x21: ffff80000919b000 [ 360.372143] x20: ffff00000f5974e0 x19: ffff00000f5974e0 x18: ffff8000097fcf48 [ 360.379382] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000053f40 [ 360.386622] x14: ffff800009850e88 x13: 0000000000000002 x12: 000000000000a60c [ 360.393861] x11: 000000000000a610 x10: 0000000000000000 x9 : 0000000000000008 [ 360.401100] x8 : 0101010101010101 x7 : 00000000a473c394 x6 : 0080808080808080 [ 360.408339] x5 : 0000000000000001 x4 : 0000000000000000 x3 : ffff80000919b458 [ 360.415578] x2 : ffff8000097577f0 x1 : 0000000000000001 x0 : 0000000000000000 [ 360.422818] Call trace: [ 360.425299] __flush_work+0x414/0x470 [ 360.429012] __cancel_work_timer+0x140/0x1b0 [ 360.433340] cancel_delayed_work_sync+0x10/0x18 [ 360.437931] gpio_keys_quiesce_key+0x28/0x58 [gpio_keys] [ 360.443327] devm_action_release+0x10/0x18 [ 360.447481] release_nodes+0x8c/0x1a0 [ 360.451194] devres_release_all+0x90/0x100 [ 360.455346] device_unbind_cleanup+0x14/0x60 [ 360.459677] device_release_driver_internal+0xe8/0x168 [ 360.464883] driver_detach+0x4c/0x90 [ 360.468509] bus_remove_driver+0x54/0xb0 [ 360.472485] driver_unregister+0x2c/0x58 [ 360.476462] platform_driver_unregister+0x10/0x18 [ 360.481230] gpio_keys_exit+0x14/0x828 [gpio_keys] [ 360.486088] __arm64_sys_delete_module+0x1e0/0x270 [ 360.490945] invoke_syscall+0x40/0xf8 [ 360.494661] el0_svc_common.constprop.3+0xf0/0x110 [ 360.499515] do_el0_svc+0x20/0x78 [ 360.502877] el0_svc+0x48/0xf8 [ 360.505977] el0t_64_sync_handler+0x88/0xb0 [ 360.510216] el0t_64_sync+0x148/0x14c [ 360.513930] irq event stamp: 4306 [ 360.517288] hardirqs last enabled at (4305): [<ffff8000080b0300>] __cancel_work_timer+0x130/0x1b0 [ 360.526359] hardirqs last disabled at (4306): [<ffff800008d194fc>] el1_dbg+0x24/0x88 [ 360.534204] softirqs last enabled at (4278): [<ffff8000080104a0>] _stext+0x4a0/0x5e0 [ 360.542133] softirqs last disabled at (4267): [<ffff8000080932ac>] irq_exit_rcu+0x18c/0x1b0 [ 360.550591] ---[ end trace 0000000000000000 ]---
CVSS Score
5.5
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: powerpc/iommu: Add missing of_node_put in iommu_init_early_dart The device_node pointer is returned by of_find_compatible_node with refcount incremented. We should use of_node_put() to avoid the refcount leak.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: RDMA/hfi1: Prevent use of lock before it is initialized If there is a failure during probe of hfi1 before the sdma_map_lock is initialized, the call to hfi1_free_devdata() will attempt to use a lock that has not been initialized. If the locking correctness validator is on then an INFO message and stack trace resembling the following may be seen: INFO: trying to register non-static key. The code is fine but needs lockdep annotation, or maybe you didn't initialize this object before use? turning off the locking correctness validator. Call Trace: register_lock_class+0x11b/0x880 __lock_acquire+0xf3/0x7930 lock_acquire+0xff/0x2d0 _raw_spin_lock_irq+0x46/0x60 sdma_clean+0x42a/0x660 [hfi1] hfi1_free_devdata+0x3a7/0x420 [hfi1] init_one+0x867/0x11a0 [hfi1] pci_device_probe+0x40e/0x8d0 The use of sdma_map_lock in sdma_clean() is for freeing the sdma_map memory, and sdma_map is not allocated/initialized until after sdma_map_lock has been initialized. This code only needs to be run if sdma_map is not NULL, and so checking for that condition will avoid trying to use the lock before it is initialized.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: net: annotate races around sk->sk_bound_dev_if UDP sendmsg() is lockless, and reads sk->sk_bound_dev_if while this field can be changed by another thread. Adds minimal annotations to avoid KCSAN splats for UDP. Following patches will add more annotations to potential lockless readers. BUG: KCSAN: data-race in __ip6_datagram_connect / udpv6_sendmsg write to 0xffff888136d47a94 of 4 bytes by task 7681 on cpu 0: __ip6_datagram_connect+0x6e2/0x930 net/ipv6/datagram.c:221 ip6_datagram_connect+0x2a/0x40 net/ipv6/datagram.c:272 inet_dgram_connect+0x107/0x190 net/ipv4/af_inet.c:576 __sys_connect_file net/socket.c:1900 [inline] __sys_connect+0x197/0x1b0 net/socket.c:1917 __do_sys_connect net/socket.c:1927 [inline] __se_sys_connect net/socket.c:1924 [inline] __x64_sys_connect+0x3d/0x50 net/socket.c:1924 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x50 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae read to 0xffff888136d47a94 of 4 bytes by task 7670 on cpu 1: udpv6_sendmsg+0xc60/0x16e0 net/ipv6/udp.c:1436 inet6_sendmsg+0x5f/0x80 net/ipv6/af_inet6.c:652 sock_sendmsg_nosec net/socket.c:705 [inline] sock_sendmsg net/socket.c:725 [inline] ____sys_sendmsg+0x39a/0x510 net/socket.c:2413 ___sys_sendmsg net/socket.c:2467 [inline] __sys_sendmmsg+0x267/0x4c0 net/socket.c:2553 __do_sys_sendmmsg net/socket.c:2582 [inline] __se_sys_sendmmsg net/socket.c:2579 [inline] __x64_sys_sendmmsg+0x53/0x60 net/socket.c:2579 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x2b/0x50 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x44/0xae value changed: 0x00000000 -> 0xffffff9b Reported by Kernel Concurrency Sanitizer on: CPU: 1 PID: 7670 Comm: syz-executor.3 Tainted: G W 5.18.0-rc1-syzkaller-dirty #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 I chose to not add Fixes: tag because race has minor consequences and stable teams busy enough.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix dereference of stale list iterator after loop body The list iterator variable will be a bogus pointer if no break was hit. Dereferencing it (cur->page in this case) could load an out-of-bounds/undefined value making it unsafe to use that in the comparision to determine if the specific element was found. Since 'cur->page' *can* be out-ouf-bounds it cannot be guaranteed that by chance (or intention of an attacker) it matches the value of 'page' even though the correct element was not found. This is fixed by using a separate list iterator variable for the loop and only setting the original variable if a suitable element was found. Then determing if the element was found is simply checking if the variable is set.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: ext4: fix bug_on in __es_tree_search Hulk Robot reported a BUG_ON: ================================================================== kernel BUG at fs/ext4/extents_status.c:199! [...] RIP: 0010:ext4_es_end fs/ext4/extents_status.c:199 [inline] RIP: 0010:__es_tree_search+0x1e0/0x260 fs/ext4/extents_status.c:217 [...] Call Trace: ext4_es_cache_extent+0x109/0x340 fs/ext4/extents_status.c:766 ext4_cache_extents+0x239/0x2e0 fs/ext4/extents.c:561 ext4_find_extent+0x6b7/0xa20 fs/ext4/extents.c:964 ext4_ext_map_blocks+0x16b/0x4b70 fs/ext4/extents.c:4384 ext4_map_blocks+0xe26/0x19f0 fs/ext4/inode.c:567 ext4_getblk+0x320/0x4c0 fs/ext4/inode.c:980 ext4_bread+0x2d/0x170 fs/ext4/inode.c:1031 ext4_quota_read+0x248/0x320 fs/ext4/super.c:6257 v2_read_header+0x78/0x110 fs/quota/quota_v2.c:63 v2_check_quota_file+0x76/0x230 fs/quota/quota_v2.c:82 vfs_load_quota_inode+0x5d1/0x1530 fs/quota/dquot.c:2368 dquot_enable+0x28a/0x330 fs/quota/dquot.c:2490 ext4_quota_enable fs/ext4/super.c:6137 [inline] ext4_enable_quotas+0x5d7/0x960 fs/ext4/super.c:6163 ext4_fill_super+0xa7c9/0xdc00 fs/ext4/super.c:4754 mount_bdev+0x2e9/0x3b0 fs/super.c:1158 mount_fs+0x4b/0x1e4 fs/super.c:1261 [...] ================================================================== Above issue may happen as follows: ------------------------------------- ext4_fill_super ext4_enable_quotas ext4_quota_enable ext4_iget __ext4_iget ext4_ext_check_inode ext4_ext_check __ext4_ext_check ext4_valid_extent_entries Check for overlapping extents does't take effect dquot_enable vfs_load_quota_inode v2_check_quota_file v2_read_header ext4_quota_read ext4_bread ext4_getblk ext4_map_blocks ext4_ext_map_blocks ext4_find_extent ext4_cache_extents ext4_es_cache_extent ext4_es_cache_extent __es_tree_search ext4_es_end BUG_ON(es->es_lblk + es->es_len < es->es_lblk) The error ext4 extents is as follows: 0af3 0300 0400 0000 00000000 extent_header 00000000 0100 0000 12000000 extent1 00000000 0100 0000 18000000 extent2 02000000 0400 0000 14000000 extent3 In the ext4_valid_extent_entries function, if prev is 0, no error is returned even if lblock<=prev. This was intended to skip the check on the first extent, but in the error image above, prev=0+1-1=0 when checking the second extent, so even though lblock<=prev, the function does not return an error. As a result, bug_ON occurs in __es_tree_search and the system panics. To solve this problem, we only need to check that: 1. The lblock of the first extent is not less than 0. 2. The lblock of the next extent is not less than the next block of the previous extent. The same applies to extent_idx.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: bfq: Make sure bfqg for which we are queueing requests is online Bios queued into BFQ IO scheduler can be associated with a cgroup that was already offlined. This may then cause insertion of this bfq_group into a service tree. But this bfq_group will get freed as soon as last bio associated with it is completed leading to use after free issues for service tree users. Fix the problem by making sure we always operate on online bfq_group. If the bfq_group associated with the bio is not online, we pick the first online parent.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: bfq: Avoid merging queues with different parents It can happen that the parent of a bfqq changes between the moment we decide two queues are worth to merge (and set bic->stable_merge_bfqq) and the moment bfq_setup_merge() is called. This can happen e.g. because the process submitted IO for a different cgroup and thus bfqq got reparented. It can even happen that the bfqq we are merging with has parent cgroup that is already offline and going to be destroyed in which case the merge can lead to use-after-free issues such as: BUG: KASAN: use-after-free in __bfq_deactivate_entity+0x9cb/0xa50 Read of size 8 at addr ffff88800693c0c0 by task runc:[2:INIT]/10544 CPU: 0 PID: 10544 Comm: runc:[2:INIT] Tainted: G E 5.15.2-0.g5fb85fd-default #1 openSUSE Tumbleweed (unreleased) f1f3b891c72369aebecd2e43e4641a6358867c70 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014 Call Trace: <IRQ> dump_stack_lvl+0x46/0x5a print_address_description.constprop.0+0x1f/0x140 ? __bfq_deactivate_entity+0x9cb/0xa50 kasan_report.cold+0x7f/0x11b ? __bfq_deactivate_entity+0x9cb/0xa50 __bfq_deactivate_entity+0x9cb/0xa50 ? update_curr+0x32f/0x5d0 bfq_deactivate_entity+0xa0/0x1d0 bfq_del_bfqq_busy+0x28a/0x420 ? resched_curr+0x116/0x1d0 ? bfq_requeue_bfqq+0x70/0x70 ? check_preempt_wakeup+0x52b/0xbc0 __bfq_bfqq_expire+0x1a2/0x270 bfq_bfqq_expire+0xd16/0x2160 ? try_to_wake_up+0x4ee/0x1260 ? bfq_end_wr_async_queues+0xe0/0xe0 ? _raw_write_unlock_bh+0x60/0x60 ? _raw_spin_lock_irq+0x81/0xe0 bfq_idle_slice_timer+0x109/0x280 ? bfq_dispatch_request+0x4870/0x4870 __hrtimer_run_queues+0x37d/0x700 ? enqueue_hrtimer+0x1b0/0x1b0 ? kvm_clock_get_cycles+0xd/0x10 ? ktime_get_update_offsets_now+0x6f/0x280 hrtimer_interrupt+0x2c8/0x740 Fix the problem by checking that the parent of the two bfqqs we are merging in bfq_setup_merge() is the same.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-02-26
In the Linux kernel, the following vulnerability has been resolved: bfq: Update cgroup information before merging bio When the process is migrated to a different cgroup (or in case of writeback just starts submitting bios associated with a different cgroup) bfq_merge_bio() can operate with stale cgroup information in bic. Thus the bio can be merged to a request from a different cgroup or it can result in merging of bfqqs for different cgroups or bfqqs of already dead cgroups and causing possible use-after-free issues. Fix the problem by updating cgroup information in bfq_merge_bio().
CVSS Score
7.8
EPSS Score
0.0
Published
2025-02-26


Contact Us

Shodan ® - All rights reserved