In the Linux kernel, the following vulnerability has been resolved:
cpufreq: governor: Use kobject release() method to free dbs_data
The struct dbs_data embeds a struct gov_attr_set and
the struct gov_attr_set embeds a kobject. Since every kobject must have
a release() method and we can't use kfree() to free it directly,
so introduce cpufreq_dbs_data_release() to release the dbs_data via
the kobject::release() method. This fixes the calltrace like below:
ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x34
WARNING: CPU: 12 PID: 810 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100
Modules linked in:
CPU: 12 PID: 810 Comm: sh Not tainted 5.16.0-next-20220120-yocto-standard+ #536
Hardware name: Marvell OcteonTX CN96XX board (DT)
pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : debug_print_object+0xb8/0x100
lr : debug_print_object+0xb8/0x100
sp : ffff80001dfcf9a0
x29: ffff80001dfcf9a0 x28: 0000000000000001 x27: ffff0001464f0000
x26: 0000000000000000 x25: ffff8000090e3f00 x24: ffff80000af60210
x23: ffff8000094dfb78 x22: ffff8000090e3f00 x21: ffff0001080b7118
x20: ffff80000aeb2430 x19: ffff800009e8f5e0 x18: 0000000000000000
x17: 0000000000000002 x16: 00004d62e58be040 x15: 013590470523aff8
x14: ffff8000090e1828 x13: 0000000001359047 x12: 00000000f5257d14
x11: 0000000000040591 x10: 0000000066c1ffea x9 : ffff8000080d15e0
x8 : ffff80000a1765a8 x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff800009e8c000 x4 : ffff800009e8c760 x3 : 0000000000000000
x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0001474ed040
Call trace:
debug_print_object+0xb8/0x100
__debug_check_no_obj_freed+0x1d0/0x25c
debug_check_no_obj_freed+0x24/0xa0
kfree+0x11c/0x440
cpufreq_dbs_governor_exit+0xa8/0xac
cpufreq_exit_governor+0x44/0x90
cpufreq_set_policy+0x29c/0x570
store_scaling_governor+0x110/0x154
store+0xb0/0xe0
sysfs_kf_write+0x58/0x84
kernfs_fop_write_iter+0x12c/0x1c0
new_sync_write+0xf0/0x18c
vfs_write+0x1cc/0x220
ksys_write+0x74/0x100
__arm64_sys_write+0x28/0x3c
invoke_syscall.constprop.0+0x58/0xf0
do_el0_svc+0x70/0x170
el0_svc+0x54/0x190
el0t_64_sync_handler+0xa4/0x130
el0t_64_sync+0x1a0/0x1a4
irq event stamp: 189006
hardirqs last enabled at (189005): [<ffff8000080849d0>] finish_task_switch.isra.0+0xe0/0x2c0
hardirqs last disabled at (189006): [<ffff8000090667a4>] el1_dbg+0x24/0xa0
softirqs last enabled at (188966): [<ffff8000080106d0>] __do_softirq+0x4b0/0x6a0
softirqs last disabled at (188957): [<ffff80000804a618>] __irq_exit_rcu+0x108/0x1a4
[ rjw: Because can be freed by the gov_attr_set_put() in
cpufreq_dbs_governor_exit() now, it is also necessary to put the
invocation of the governor ->exit() callback into the new
cpufreq_dbs_data_release() function. ]
In the Linux kernel, the following vulnerability has been resolved:
ice: always check VF VSI pointer values
The ice_get_vf_vsi function can return NULL in some cases, such as if
handling messages during a reset where the VSI is being removed and
recreated.
Several places throughout the driver do not bother to check whether this
VSI pointer is valid. Static analysis tools maybe report issues because
they detect paths where a potentially NULL pointer could be dereferenced.
Fix this by checking the return value of ice_get_vf_vsi everywhere.
In the Linux kernel, the following vulnerability has been resolved:
ath10k: skip ath10k_halt during suspend for driver state RESTARTING
Double free crash is observed when FW recovery(caused by wmi
timeout/crash) is followed by immediate suspend event. The FW recovery
is triggered by ath10k_core_restart() which calls driver clean up via
ath10k_halt(). When the suspend event occurs between the FW recovery,
the restart worker thread is put into frozen state until suspend completes.
The suspend event triggers ath10k_stop() which again triggers ath10k_halt()
The double invocation of ath10k_halt() causes ath10k_htt_rx_free() to be
called twice(Note: ath10k_htt_rx_alloc was not called by restart worker
thread because of its frozen state), causing the crash.
To fix this, during the suspend flow, skip call to ath10k_halt() in
ath10k_stop() when the current driver state is ATH10K_STATE_RESTARTING.
Also, for driver state ATH10K_STATE_RESTARTING, call
ath10k_wait_for_suspend() in ath10k_stop(). This is because call to
ath10k_wait_for_suspend() is skipped later in
[ath10k_halt() > ath10k_core_stop()] for the driver state
ATH10K_STATE_RESTARTING.
The frozen restart worker thread will be cancelled during resume when the
device comes out of suspend.
Below is the crash stack for reference:
[ 428.469167] ------------[ cut here ]------------
[ 428.469180] kernel BUG at mm/slub.c:4150!
[ 428.469193] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
[ 428.469219] Workqueue: events_unbound async_run_entry_fn
[ 428.469230] RIP: 0010:kfree+0x319/0x31b
[ 428.469241] RSP: 0018:ffffa1fac015fc30 EFLAGS: 00010246
[ 428.469247] RAX: ffffedb10419d108 RBX: ffff8c05262b0000
[ 428.469252] RDX: ffff8c04a8c07000 RSI: 0000000000000000
[ 428.469256] RBP: ffffa1fac015fc78 R08: 0000000000000000
[ 428.469276] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 428.469285] Call Trace:
[ 428.469295] ? dma_free_attrs+0x5f/0x7d
[ 428.469320] ath10k_core_stop+0x5b/0x6f
[ 428.469336] ath10k_halt+0x126/0x177
[ 428.469352] ath10k_stop+0x41/0x7e
[ 428.469387] drv_stop+0x88/0x10e
[ 428.469410] __ieee80211_suspend+0x297/0x411
[ 428.469441] rdev_suspend+0x6e/0xd0
[ 428.469462] wiphy_suspend+0xb1/0x105
[ 428.469483] ? name_show+0x2d/0x2d
[ 428.469490] dpm_run_callback+0x8c/0x126
[ 428.469511] ? name_show+0x2d/0x2d
[ 428.469517] __device_suspend+0x2e7/0x41b
[ 428.469523] async_suspend+0x1f/0x93
[ 428.469529] async_run_entry_fn+0x3d/0xd1
[ 428.469535] process_one_work+0x1b1/0x329
[ 428.469541] worker_thread+0x213/0x372
[ 428.469547] kthread+0x150/0x15f
[ 428.469552] ? pr_cont_work+0x58/0x58
[ 428.469558] ? kthread_blkcg+0x31/0x31
Tested-on: QCA6174 hw3.2 PCI WLAN.RM.4.4.1-00288-QCARMSWPZ-1
In the Linux kernel, the following vulnerability has been resolved:
usbnet: Run unregister_netdev() before unbind() again
Commit 2c9d6c2b871d ("usbnet: run unbind() before unregister_netdev()")
sought to fix a use-after-free on disconnect of USB Ethernet adapters.
It turns out that a different fix is necessary to address the issue:
https://lore.kernel.org/netdev/18b3541e5372bc9b9fc733d422f4e698c089077c.1650177997.git.lukas@wunner.de/
So the commit was not necessary.
The commit made binding and unbinding of USB Ethernet asymmetrical:
Before, usbnet_probe() first invoked the ->bind() callback and then
register_netdev(). usbnet_disconnect() mirrored that by first invoking
unregister_netdev() and then ->unbind().
Since the commit, the order in usbnet_disconnect() is reversed and no
longer mirrors usbnet_probe().
One consequence is that a PHY disconnected (and stopped) in ->unbind()
is afterwards stopped once more by unregister_netdev() as it closes the
netdev before unregistering. That necessitates a contortion in ->stop()
because the PHY may only be stopped if it hasn't already been
disconnected.
Reverting the commit allows making the call to phy_stop() unconditional
in ->stop().
In the Linux kernel, the following vulnerability has been resolved:
media: rga: fix possible memory leak in rga_probe
rga->m2m_dev needs to be freed when rga_probe fails.
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Inhibit aborts if external loopback plug is inserted
After running a short external loopback test, when the external loopback is
removed and a normal cable inserted that is directly connected to a target
device, the system oops in the llpfc_set_rrq_active() routine.
When the loopback was inserted an FLOGI was transmit. As we're looped back,
we receive the FLOGI request. The FLOGI is ABTS'd as we recognize the same
wppn thus understand it's a loopback. However, as the ABTS sends address
information the port is not set to (fffffe), the ABTS is dropped on the
wire. A short 1 frame loopback test is run and completes before the ABTS
times out. The looback is unplugged and the new cable plugged in, and the
an FLOGI to the new device occurs and completes. Due to a mixup in ref
counting the completion of the new FLOGI releases the fabric ndlp. Then the
original ABTS completes and references the released ndlp generating the
oops.
Correct by no-op'ing the ABTS when in loopback mode (it will be dropped
anyway). Added a flag to track the mode to recognize when it should be
no-op'd.
In the Linux kernel, the following vulnerability has been resolved:
net: remove two BUG() from skb_checksum_help()
I have a syzbot report that managed to get a crash in skb_checksum_help()
If syzbot can trigger these BUG(), it makes sense to replace
them with more friendly WARN_ON_ONCE() since skb_checksum_help()
can instead return an error code.
Note that syzbot will still crash there, until real bug is fixed.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: fsl: Fix refcount leak in imx_sgtl5000_probe
of_find_i2c_device_by_node() takes a reference,
In error paths, we should call put_device() to drop
the reference to aviod refount leak.
In the Linux kernel, the following vulnerability has been resolved:
thermal/core: Fix memory leak in __thermal_cooling_device_register()
I got memory leak as follows when doing fault injection test:
unreferenced object 0xffff888010080000 (size 264312):
comm "182", pid 102533, jiffies 4296434960 (age 10.100s)
hex dump (first 32 bytes):
00 00 00 00 ad 4e ad de ff ff ff ff 00 00 00 00 .....N..........
ff ff ff ff ff ff ff ff 40 7f 1f b9 ff ff ff ff ........@.......
backtrace:
[<0000000038b2f4fc>] kmalloc_order_trace+0x1d/0x110 mm/slab_common.c:969
[<00000000ebcb8da5>] __kmalloc+0x373/0x420 include/linux/slab.h:510
[<0000000084137f13>] thermal_cooling_device_setup_sysfs+0x15d/0x2d0 include/linux/slab.h:586
[<00000000352b8755>] __thermal_cooling_device_register+0x332/0xa60 drivers/thermal/thermal_core.c:927
[<00000000fb9f331b>] devm_thermal_of_cooling_device_register+0x6b/0xf0 drivers/thermal/thermal_core.c:1041
[<000000009b8012d2>] max6650_probe.cold+0x557/0x6aa drivers/hwmon/max6650.c:211
[<00000000da0b7e04>] i2c_device_probe+0x472/0xac0 drivers/i2c/i2c-core-base.c:561
If device_register() fails, thermal_cooling_device_destroy_sysfs() need be called
to free the memory allocated in thermal_cooling_device_setup_sysfs().