In the Linux kernel, the following vulnerability has been resolved:
scsi: qla1280: Fix kernel oops when debug level > 2
A null dereference or oops exception will eventually occur when qla1280.c
driver is compiled with DEBUG_QLA1280 enabled and ql_debug_level > 2. I
think its clear from the code that the intention here is sg_dma_len(s) not
length of sg_next(s) when printing the debug info.
In the Linux kernel, the following vulnerability has been resolved:
HID: appleir: Fix potential NULL dereference at raw event handle
Syzkaller reports a NULL pointer dereference issue in input_event().
BUG: KASAN: null-ptr-deref in instrument_atomic_read include/linux/instrumented.h:68 [inline]
BUG: KASAN: null-ptr-deref in _test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
BUG: KASAN: null-ptr-deref in is_event_supported drivers/input/input.c:67 [inline]
BUG: KASAN: null-ptr-deref in input_event+0x42/0xa0 drivers/input/input.c:395
Read of size 8 at addr 0000000000000028 by task syz-executor199/2949
CPU: 0 UID: 0 PID: 2949 Comm: syz-executor199 Not tainted 6.13.0-rc4-syzkaller-00076-gf097a36ef88d #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
kasan_report+0xd9/0x110 mm/kasan/report.c:602
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
instrument_atomic_read include/linux/instrumented.h:68 [inline]
_test_bit include/asm-generic/bitops/instrumented-non-atomic.h:141 [inline]
is_event_supported drivers/input/input.c:67 [inline]
input_event+0x42/0xa0 drivers/input/input.c:395
input_report_key include/linux/input.h:439 [inline]
key_down drivers/hid/hid-appleir.c:159 [inline]
appleir_raw_event+0x3e5/0x5e0 drivers/hid/hid-appleir.c:232
__hid_input_report.constprop.0+0x312/0x440 drivers/hid/hid-core.c:2111
hid_ctrl+0x49f/0x550 drivers/hid/usbhid/hid-core.c:484
__usb_hcd_giveback_urb+0x389/0x6e0 drivers/usb/core/hcd.c:1650
usb_hcd_giveback_urb+0x396/0x450 drivers/usb/core/hcd.c:1734
dummy_timer+0x17f7/0x3960 drivers/usb/gadget/udc/dummy_hcd.c:1993
__run_hrtimer kernel/time/hrtimer.c:1739 [inline]
__hrtimer_run_queues+0x20a/0xae0 kernel/time/hrtimer.c:1803
hrtimer_run_softirq+0x17d/0x350 kernel/time/hrtimer.c:1820
handle_softirqs+0x206/0x8d0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0xfa/0x160 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0x90/0xb0 arch/x86/kernel/apic/apic.c:1049
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20 arch/x86/include/asm/idtentry.h:702
__mod_timer+0x8f6/0xdc0 kernel/time/timer.c:1185
add_timer+0x62/0x90 kernel/time/timer.c:1295
schedule_timeout+0x11f/0x280 kernel/time/sleep_timeout.c:98
usbhid_wait_io+0x1c7/0x380 drivers/hid/usbhid/hid-core.c:645
usbhid_init_reports+0x19f/0x390 drivers/hid/usbhid/hid-core.c:784
hiddev_ioctl+0x1133/0x15b0 drivers/hid/usbhid/hiddev.c:794
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
This happens due to the malformed report items sent by the emulated device
which results in a report, that has no fields, being added to the report list.
Due to this appleir_input_configured() is never called, hidinput_connect()
fails which results in the HID_CLAIMED_INPUT flag is not being set. However,
it does not make appleir_probe() fail and lets the event callback to be
called without the associated input device.
Thus, add a check for the HID_CLAIMED_INPUT flag and leave the event hook
early if the driver didn't claim any input_dev for some reason. Moreover,
some other hid drivers accessing input_dev in their event callbacks do have
similar checks, too.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
In the Linux kernel, the following vulnerability has been resolved:
rapidio: fix an API misues when rio_add_net() fails
rio_add_net() calls device_register() and fails when device_register()
fails. Thus, put_device() should be used rather than kfree(). Add
"mport->net = NULL;" to avoid a use after free issue.
In the Linux kernel, the following vulnerability has been resolved:
rapidio: add check for rio_add_net() in rio_scan_alloc_net()
The return value of rio_add_net() should be checked. If it fails,
put_device() should be called to free the memory and give up the reference
initialized in rio_add_net().
In the Linux kernel, the following vulnerability has been resolved:
llc: do not use skb_get() before dev_queue_xmit()
syzbot is able to crash hosts [1], using llc and devices
not supporting IFF_TX_SKB_SHARING.
In this case, e1000 driver calls eth_skb_pad(), while
the skb is shared.
Simply replace skb_get() by skb_clone() in net/llc/llc_s_ac.c
Note that e1000 driver might have an issue with pktgen,
because it does not clear IFF_TX_SKB_SHARING, this is an
orthogonal change.
We need to audit other skb_get() uses in net/llc.
[1]
kernel BUG at net/core/skbuff.c:2178 !
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN NOPTI
CPU: 0 UID: 0 PID: 16371 Comm: syz.2.2764 Not tainted 6.14.0-rc4-syzkaller-00052-gac9c34d1e45a #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:pskb_expand_head+0x6ce/0x1240 net/core/skbuff.c:2178
Call Trace:
<TASK>
__skb_pad+0x18a/0x610 net/core/skbuff.c:2466
__skb_put_padto include/linux/skbuff.h:3843 [inline]
skb_put_padto include/linux/skbuff.h:3862 [inline]
eth_skb_pad include/linux/etherdevice.h:656 [inline]
e1000_xmit_frame+0x2d99/0x5800 drivers/net/ethernet/intel/e1000/e1000_main.c:3128
__netdev_start_xmit include/linux/netdevice.h:5151 [inline]
netdev_start_xmit include/linux/netdevice.h:5160 [inline]
xmit_one net/core/dev.c:3806 [inline]
dev_hard_start_xmit+0x9a/0x7b0 net/core/dev.c:3822
sch_direct_xmit+0x1ae/0xc30 net/sched/sch_generic.c:343
__dev_xmit_skb net/core/dev.c:4045 [inline]
__dev_queue_xmit+0x13d4/0x43e0 net/core/dev.c:4621
dev_queue_xmit include/linux/netdevice.h:3313 [inline]
llc_sap_action_send_test_c+0x268/0x320 net/llc/llc_s_ac.c:144
llc_exec_sap_trans_actions net/llc/llc_sap.c:153 [inline]
llc_sap_next_state net/llc/llc_sap.c:182 [inline]
llc_sap_state_process+0x239/0x510 net/llc/llc_sap.c:209
llc_ui_sendmsg+0xd0d/0x14e0 net/llc/af_llc.c:993
sock_sendmsg_nosec net/socket.c:718 [inline]
In the Linux kernel, the following vulnerability has been resolved:
HID: intel-ish-hid: Fix use-after-free issue in ishtp_hid_remove()
The system can experience a random crash a few minutes after the driver is
removed. This issue occurs due to improper handling of memory freeing in
the ishtp_hid_remove() function.
The function currently frees the `driver_data` directly within the loop
that destroys the HID devices, which can lead to accessing freed memory.
Specifically, `hid_destroy_device()` uses `driver_data` when it calls
`hid_ishtp_set_feature()` to power off the sensor, so freeing
`driver_data` beforehand can result in accessing invalid memory.
This patch resolves the issue by storing the `driver_data` in a temporary
variable before calling `hid_destroy_device()`, and then freeing the
`driver_data` after the device is destroyed.
In the Linux kernel, the following vulnerability has been resolved:
hwpoison, memory_hotplug: lock folio before unmap hwpoisoned folio
Commit b15c87263a69 ("hwpoison, memory_hotplug: allow hwpoisoned pages to
be offlined) add page poison checks in do_migrate_range in order to make
offline hwpoisoned page possible by introducing isolate_lru_page and
try_to_unmap for hwpoisoned page. However folio lock must be held before
calling try_to_unmap. Add it to fix this problem.
Warning will be produced if folio is not locked during unmap:
------------[ cut here ]------------
kernel BUG at ./include/linux/swapops.h:400!
Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
Modules linked in:
CPU: 4 UID: 0 PID: 411 Comm: bash Tainted: G W 6.13.0-rc1-00016-g3c434c7ee82a-dirty #41
Tainted: [W]=WARN
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pstate: 40400005 (nZcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : try_to_unmap_one+0xb08/0xd3c
lr : try_to_unmap_one+0x3dc/0xd3c
Call trace:
try_to_unmap_one+0xb08/0xd3c (P)
try_to_unmap_one+0x3dc/0xd3c (L)
rmap_walk_anon+0xdc/0x1f8
rmap_walk+0x3c/0x58
try_to_unmap+0x88/0x90
unmap_poisoned_folio+0x30/0xa8
do_migrate_range+0x4a0/0x568
offline_pages+0x5a4/0x670
memory_block_action+0x17c/0x374
memory_subsys_offline+0x3c/0x78
device_offline+0xa4/0xd0
state_store+0x8c/0xf0
dev_attr_store+0x18/0x2c
sysfs_kf_write+0x44/0x54
kernfs_fop_write_iter+0x118/0x1a8
vfs_write+0x3a8/0x4bc
ksys_write+0x6c/0xf8
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x44/0x100
el0_svc_common.constprop.0+0x40/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x30/0xd0
el0t_64_sync_handler+0xc8/0xcc
el0t_64_sync+0x198/0x19c
Code: f9407be0 b5fff320 d4210000 17ffff97 (d4210000)
---[ end trace 0000000000000000 ]---
In the Linux kernel, the following vulnerability has been resolved:
usb: renesas_usbhs: Flush the notify_hotplug_work
When performing continuous unbind/bind operations on the USB drivers
available on the Renesas RZ/G2L SoC, a kernel crash with the message
"Unable to handle kernel NULL pointer dereference at virtual address"
may occur. This issue points to the usbhsc_notify_hotplug() function.
Flush the delayed work to avoid its execution when driver resources are
unavailable.
In the Linux kernel, the following vulnerability has been resolved:
vlan: enforce underlying device type
Currently, VLAN devices can be created on top of non-ethernet devices.
Besides the fact that it doesn't make much sense, this also causes a
bug which leaks the address of a kernel function to usermode.
When creating a VLAN device, we initialize GARP (garp_init_applicant)
and MRP (mrp_init_applicant) for the underlying device.
As part of the initialization process, we add the multicast address of
each applicant to the underlying device, by calling dev_mc_add.
__dev_mc_add uses dev->addr_len to determine the length of the new
multicast address.
This causes an out-of-bounds read if dev->addr_len is greater than 6,
since the multicast addresses provided by GARP and MRP are only 6
bytes long.
This behaviour can be reproduced using the following commands:
ip tunnel add gretest mode ip6gre local ::1 remote ::2 dev lo
ip l set up dev gretest
ip link add link gretest name vlantest type vlan id 100
Then, the following command will display the address of garp_pdu_rcv:
ip maddr show | grep 01:80:c2:00:00:21
Fix the bug by enforcing the type of the underlying device during VLAN
device initialization.