In the Linux kernel, the following vulnerability has been resolved:
drm/xe/hdcp: Check GSC structure validity
Sometimes xe_gsc is not initialized when checked at HDCP capability
check. Add gsc structure check to avoid null pointer error.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdkfd: amdkfd_free_gtt_mem clear the correct pointer
Pass pointer reference to amdgpu_bo_unref to clear the correct pointer,
otherwise amdgpu_bo_unref clear the local variable, the original pointer
not set to NULL, this could cause use-after-free bug.
In the Linux kernel, the following vulnerability has been resolved:
drm/stm: Avoid use-after-free issues with crtc and plane
ltdc_load() calls functions drm_crtc_init_with_planes(),
drm_universal_plane_init() and drm_encoder_init(). These functions
should not be called with parameters allocated with devm_kzalloc()
to avoid use-after-free issues [1].
Use allocations managed by the DRM framework.
Found by Linux Verification Center (linuxtesting.org).
[1]
https://lore.kernel.org/lkml/u366i76e3qhh3ra5oxrtngjtm2u5lterkekcz6y2jkndhuxzli@diujon4h7qwb/
In the Linux kernel, the following vulnerability has been resolved:
block: fix integer overflow in BLKSECDISCARD
I independently rediscovered
commit 22d24a544b0d49bbcbd61c8c0eaf77d3c9297155
block: fix overflow in blk_ioctl_discard()
but for secure erase.
Same problem:
uint64_t r[2] = {512, 18446744073709551104ULL};
ioctl(fd, BLKSECDISCARD, r);
will enter near infinite loop inside blkdev_issue_secure_erase():
a.out: attempt to access beyond end of device
loop0: rw=5, sector=3399043073, nr_sectors = 1024 limit=2048
bio_check_eod: 3286214 callbacks suppressed
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: lantiq_etop: fix memory disclosure
When applying padding, the buffer is not zeroed, which results in memory
disclosure. The mentioned data is observed on the wire. This patch uses
skb_put_padto() to pad Ethernet frames properly. The mentioned function
zeroes the expanded buffer.
In case the packet cannot be padded it is silently dropped. Statistics
are also not incremented. This driver does not support statistics in the
old 32-bit format or the new 64-bit format. These will be added in the
future. In its current form, the patch should be easily backported to
stable versions.
Ethernet MACs on Amazon-SE and Danube cannot do padding of the packets
in hardware, so software padding must be applied.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Increase array size of dummy_boolean
[WHY]
dml2_core_shared_mode_support and dml_core_mode_support access the third
element of dummy_boolean, i.e. hw_debug5 = &s->dummy_boolean[2], when
dummy_boolean has size of 2. Any assignment to hw_debug5 causes an
OVERRUN.
[HOW]
Increase dummy_boolean's array size to 3.
This fixes 2 OVERRUN issues reported by Coverity.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Deallocate DML memory if allocation fails
[Why]
When DC state create DML memory allocation fails, memory is not
deallocated subsequently, resulting in uninitialized structure
that is not NULL.
[How]
Deallocate memory if DML memory allocation fails.
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Limit the number of concurrent async COPY operations
Nothing appears to limit the number of concurrent async COPY
operations that clients can start. In addition, AFAICT each async
COPY can copy an unlimited number of 4MB chunks, so can run for a
long time. Thus IMO async COPY can become a DoS vector.
Add a restriction mechanism that bounds the number of concurrent
background COPY operations. Start simple and try to be fair -- this
patch implements a per-namespace limit.
An async COPY request that occurs while this limit is exceeded gets
NFS4ERR_DELAY. The requesting client can choose to send the request
again after a delay or fall back to a traditional read/write style
copy.
If there is need to make the mechanism more sophisticated, we can
visit that in future patches.
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: reserve space for inline xattr before attaching reflink tree
One of our customers reported a crash and a corrupted ocfs2 filesystem.
The crash was due to the detection of corruption. Upon troubleshooting,
the fsck -fn output showed the below corruption
[EXTENT_LIST_FREE] Extent list in owner 33080590 claims 230 as the next free chain record,
but fsck believes the largest valid value is 227. Clamp the next record value? n
The stat output from the debugfs.ocfs2 showed the following corruption
where the "Next Free Rec:" had overshot the "Count:" in the root metadata
block.
Inode: 33080590 Mode: 0640 Generation: 2619713622 (0x9c25a856)
FS Generation: 904309833 (0x35e6ac49)
CRC32: 00000000 ECC: 0000
Type: Regular Attr: 0x0 Flags: Valid
Dynamic Features: (0x16) HasXattr InlineXattr Refcounted
Extended Attributes Block: 0 Extended Attributes Inline Size: 256
User: 0 (root) Group: 0 (root) Size: 281320357888
Links: 1 Clusters: 141738
ctime: 0x66911b56 0x316edcb8 -- Fri Jul 12 06:02:30.829349048 2024
atime: 0x66911d6b 0x7f7a28d -- Fri Jul 12 06:11:23.133669517 2024
mtime: 0x66911b56 0x12ed75d7 -- Fri Jul 12 06:02:30.317552087 2024
dtime: 0x0 -- Wed Dec 31 17:00:00 1969
Refcount Block: 2777346
Last Extblk: 2886943 Orphan Slot: 0
Sub Alloc Slot: 0 Sub Alloc Bit: 14
Tree Depth: 1 Count: 227 Next Free Rec: 230
## Offset Clusters Block#
0 0 2310 2776351
1 2310 2139 2777375
2 4449 1221 2778399
3 5670 731 2779423
4 6401 566 2780447
....... .... .......
....... .... .......
The issue was in the reflink workfow while reserving space for inline
xattr. The problematic function is ocfs2_reflink_xattr_inline(). By the
time this function is called the reflink tree is already recreated at the
destination inode from the source inode. At this point, this function
reserves space for inline xattrs at the destination inode without even
checking if there is space at the root metadata block. It simply reduces
the l_count from 243 to 227 thereby making space of 256 bytes for inline
xattr whereas the inode already has extents beyond this index (in this
case up to 230), thereby causing corruption.
The fix for this is to reserve space for inline metadata at the destination
inode before the reflink tree gets recreated. The customer has verified the
fix.