In the Linux kernel, the following vulnerability has been resolved:
udp: Fix a data-race around sysctl_udp_l3mdev_accept.
While reading sysctl_udp_l3mdev_accept, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved:
ip: Fix data-races around sysctl_ip_prot_sock.
sysctl_ip_prot_sock is accessed concurrently, and there is always a chance
of data-race. So, all readers and writers need some basic protection to
avoid load/store-tearing.
In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix data-races around sysctl_fib_multipath_hash_policy.
While reading sysctl_fib_multipath_hash_policy, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.
In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix a data-race around sysctl_fib_multipath_use_neigh.
While reading sysctl_fib_multipath_use_neigh, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its reader.
In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - add param check for RSA
Reject requests with a source buffer that is bigger than the size of the
key. This is to prevent a possible integer underflow that might happen
when copying the source scatterlist into a linear buffer.
In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - add param check for DH
Reject requests with a source buffer that is bigger than the size of the
key. This is to prevent a possible integer underflow that might happen
when copying the source scatterlist into a linear buffer.
In the Linux kernel, the following vulnerability has been resolved:
crypto: qat - fix memory leak in RSA
When an RSA key represented in form 2 (as defined in PKCS #1 V2.1) is
used, some components of the private key persist even after the TFM is
released.
Replace the explicit calls to free the buffers in qat_rsa_exit_tfm()
with a call to qat_rsa_clear_ctx() which frees all buffers referenced in
the TFM context.
In the Linux kernel, the following vulnerability has been resolved:
KVM: Don't null dereference ops->destroy
A KVM device cleanup happens in either of two callbacks:
1) destroy() which is called when the VM is being destroyed;
2) release() which is called when a device fd is closed.
Most KVM devices use 1) but Book3s's interrupt controller KVM devices
(XICS, XIVE, XIVE-native) use 2) as they need to close and reopen during
the machine execution. The error handling in kvm_ioctl_create_device()
assumes destroy() is always defined which leads to NULL dereference as
discovered by Syzkaller.
This adds a checks for destroy!=NULL and adds a missing release().
This is not changing kvm_destroy_devices() as devices with defined
release() should have been removed from the KVM devices list by then.
In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix data-races around sysctl_tcp_max_reordering.
While reading sysctl_tcp_max_reordering, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers.