In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't trust firmware n_channels
If the firmware sends us a corrupted MCC response with
n_channels much larger than the command response can be,
we might copy far too much (uninitialized) memory and
even crash if the n_channels is large enough to make it
run out of the one page allocated for the FW response.
Fix that by checking the lengths. Doing a < comparison
would be sufficient, but the firmware should be doing
it correctly, so check more strictly.
In the Linux kernel, the following vulnerability has been resolved:
gpio: sifive: Fix refcount leak in sifive_gpio_probe
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
driver core: fix resource leak in device_add()
When calling kobject_add() failed in device_add(), it will call
cleanup_glue_dir() to free resource. But in kobject_add(),
dev->kobj.parent has been set to NULL. This will cause resource leak.
The process is as follows:
device_add()
get_device_parent()
class_dir_create_and_add()
kobject_add() //kobject_get()
...
dev->kobj.parent = kobj;
...
kobject_add() //failed, but set dev->kobj.parent = NULL
...
glue_dir = get_glue_dir(dev) //glue_dir = NULL, and goto
//"Error" label
...
cleanup_glue_dir() //becaues glue_dir is NULL, not call
//kobject_put()
The preceding problem may cause insmod mac80211_hwsim.ko to failed.
sysfs: cannot create duplicate filename '/devices/virtual/mac80211_hwsim'
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
sysfs_warn_dup.cold+0x1c/0x29
sysfs_create_dir_ns+0x224/0x280
kobject_add_internal+0x2aa/0x880
kobject_add+0x135/0x1a0
get_device_parent+0x3d7/0x590
device_add+0x2aa/0x1cb0
device_create_groups_vargs+0x1eb/0x260
device_create+0xdc/0x110
mac80211_hwsim_new_radio+0x31e/0x4790 [mac80211_hwsim]
init_mac80211_hwsim+0x48d/0x1000 [mac80211_hwsim]
do_one_initcall+0x10f/0x630
do_init_module+0x19f/0x5e0
load_module+0x64b7/0x6eb0
__do_sys_finit_module+0x140/0x200
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
kobject_add_internal failed for mac80211_hwsim with -EEXIST, don't try to
register things with the same name in the same directory.
In the Linux kernel, the following vulnerability has been resolved:
ubifs: ubifs_releasepage: Remove ubifs_assert(0) to valid this process
There are two states for ubifs writing pages:
1. Dirty, Private
2. Not Dirty, Not Private
The normal process cannot go to ubifs_releasepage() which means there
exists pages being private but not dirty. Reproducer[1] shows that it
could occur (which maybe related to [2]) with following process:
PA PB PC
lock(page)[PA]
ubifs_write_end
attach_page_private // set Private
__set_page_dirty_nobuffers // set Dirty
unlock(page)
write_cache_pages[PA]
lock(page)
clear_page_dirty_for_io(page) // clear Dirty
ubifs_writepage
do_truncation[PB]
truncate_setsize
i_size_write(inode, newsize) // newsize = 0
i_size = i_size_read(inode) // i_size = 0
end_index = i_size >> PAGE_SHIFT
if (page->index > end_index)
goto out // jump
out:
unlock(page) // Private, Not Dirty
generic_fadvise[PC]
lock(page)
invalidate_inode_page
try_to_release_page
ubifs_releasepage
ubifs_assert(c, 0)
// bad assertion!
unlock(page)
truncate_pagecache[PB]
Then we may get following assertion failed:
UBIFS error (ubi0:0 pid 1683): ubifs_assert_failed [ubifs]:
UBIFS assert failed: 0, in fs/ubifs/file.c:1513
UBIFS warning (ubi0:0 pid 1683): ubifs_ro_mode [ubifs]:
switched to read-only mode, error -22
CPU: 2 PID: 1683 Comm: aa Not tainted 5.16.0-rc5-00184-g0bca5994cacc-dirty #308
Call Trace:
dump_stack+0x13/0x1b
ubifs_ro_mode+0x54/0x60 [ubifs]
ubifs_assert_failed+0x4b/0x80 [ubifs]
ubifs_releasepage+0x67/0x1d0 [ubifs]
try_to_release_page+0x57/0xe0
invalidate_inode_page+0xfb/0x130
__invalidate_mapping_pages+0xb9/0x280
invalidate_mapping_pagevec+0x12/0x20
generic_fadvise+0x303/0x3c0
ksys_fadvise64_64+0x4c/0xb0
[1] https://bugzilla.kernel.org/show_bug.cgi?id=215373
[2] https://linux-mtd.infradead.narkive.com/NQoBeT1u/patch-rfc-ubifs-fix-assert-failed-in-ubifs-set-page-dirty
In the Linux kernel, the following vulnerability has been resolved:
bpf: reject unhashed sockets in bpf_sk_assign
The semantics for bpf_sk_assign are as follows:
sk = some_lookup_func()
bpf_sk_assign(skb, sk)
bpf_sk_release(sk)
That is, the sk is not consumed by bpf_sk_assign. The function
therefore needs to make sure that sk lives long enough to be
consumed from __inet_lookup_skb. The path through the stack for a
TCPv4 packet is roughly:
netif_receive_skb_core: takes RCU read lock
__netif_receive_skb_core:
sch_handle_ingress:
tcf_classify:
bpf_sk_assign()
deliver_ptype_list_skb:
deliver_skb:
ip_packet_type->func == ip_rcv:
ip_rcv_core:
ip_rcv_finish_core:
dst_input:
ip_local_deliver:
ip_local_deliver_finish:
ip_protocol_deliver_rcu:
tcp_v4_rcv:
__inet_lookup_skb:
skb_steal_sock
The existing helper takes advantage of the fact that everything
happens in the same RCU critical section: for sockets with
SOCK_RCU_FREE set bpf_sk_assign never takes a reference.
skb_steal_sock then checks SOCK_RCU_FREE again and does sock_put
if necessary.
This approach assumes that SOCK_RCU_FREE is never set on a sk
between bpf_sk_assign and skb_steal_sock, but this invariant is
violated by unhashed UDP sockets. A new UDP socket is created
in TCP_CLOSE state but without SOCK_RCU_FREE set. That flag is only
added in udp_lib_get_port() which happens when a socket is bound.
When bpf_sk_assign was added it wasn't possible to access unhashed
UDP sockets from BPF, so this wasn't a problem. This changed
in commit 0c48eefae712 ("sock_map: Lift socket state restriction
for datagram sockets"), but the helper wasn't adjusted accordingly.
The following sequence of events will therefore lead to a refcount
leak:
1. Add socket(AF_INET, SOCK_DGRAM) to a sockmap.
2. Pull socket out of sockmap and bpf_sk_assign it. Since
SOCK_RCU_FREE is not set we increment the refcount.
3. bind() or connect() the socket, setting SOCK_RCU_FREE.
4. skb_steal_sock will now set refcounted = false due to
SOCK_RCU_FREE.
5. tcp_v4_rcv() skips sock_put().
Fix the problem by rejecting unhashed sockets in bpf_sk_assign().
This matches the behaviour of __inet_lookup_skb which is ultimately
the goal of bpf_sk_assign().
In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix multiple LUN_RESET handling
This fixes a bug where an initiator thinks a LUN_RESET has cleaned up
running commands when it hasn't. The bug was added in commit 51ec502a3266
("target: Delete tmr from list before processing").
The problem occurs when:
1. We have N I/O cmds running in the target layer spread over 2 sessions.
2. The initiator sends a LUN_RESET for each session.
3. session1's LUN_RESET loops over all the running commands from both
sessions and moves them to its local drain_task_list.
4. session2's LUN_RESET does not see the LUN_RESET from session1 because
the commit above has it remove itself. session2 also does not see any
commands since the other reset moved them off the state lists.
5. sessions2's LUN_RESET will then complete with a successful response.
6. sessions2's inititor believes the running commands on its session are
now cleaned up due to the successful response and cleans up the running
commands from its side. It then restarts them.
7. The commands do eventually complete on the backend and the target
starts to return aborted task statuses for them. The initiator will
either throw a invalid ITT error or might accidentally lookup a new
task if the ITT has been reallocated already.
Fix the bug by reverting the patch, and serialize the execution of
LUN_RESETs and Preempt and Aborts.
Also prevent us from waiting on LUN_RESETs in core_tmr_drain_tmr_list,
because it turns out the original patch fixed a bug that was not
mentioned. For LUN_RESET1 core_tmr_drain_tmr_list can see a second
LUN_RESET and wait on it. Then the second reset will run
core_tmr_drain_tmr_list and see the first reset and wait on it resulting in
a deadlock.
In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: delete timer and free skb queue when unloading
Fix possible crash and memory leak on driver unload by deleting
TX purge timer and freeing C2H queue in 'rtw_core_deinit()',
shrink critical section in the latter by freeing COEX queue
out of TX report lock scope.
In the Linux kernel, the following vulnerability has been resolved:
bpf, cpumap: Make sure kthread is running before map update returns
The following warning was reported when running stress-mode enabled
xdp_redirect_cpu with some RT threads:
------------[ cut here ]------------
WARNING: CPU: 4 PID: 65 at kernel/bpf/cpumap.c:135
CPU: 4 PID: 65 Comm: kworker/4:1 Not tainted 6.5.0-rc2+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: events cpu_map_kthread_stop
RIP: 0010:put_cpu_map_entry+0xda/0x220
......
Call Trace:
<TASK>
? show_regs+0x65/0x70
? __warn+0xa5/0x240
......
? put_cpu_map_entry+0xda/0x220
cpu_map_kthread_stop+0x41/0x60
process_one_work+0x6b0/0xb80
worker_thread+0x96/0x720
kthread+0x1a5/0x1f0
ret_from_fork+0x3a/0x70
ret_from_fork_asm+0x1b/0x30
</TASK>
The root cause is the same as commit 436901649731 ("bpf: cpumap: Fix memory
leak in cpu_map_update_elem"). The kthread is stopped prematurely by
kthread_stop() in cpu_map_kthread_stop(), and kthread() doesn't call
cpu_map_kthread_run() at all but XDP program has already queued some
frames or skbs into ptr_ring. So when __cpu_map_ring_cleanup() checks
the ptr_ring, it will find it was not emptied and report a warning.
An alternative fix is to use __cpu_map_ring_cleanup() to drop these
pending frames or skbs when kthread_stop() returns -EINTR, but it may
confuse the user, because these frames or skbs have been handled
correctly by XDP program. So instead of dropping these frames or skbs,
just make sure the per-cpu kthread is running before
__cpu_map_entry_alloc() returns.
After apply the fix, the error handle for kthread_stop() will be
unnecessary because it will always return 0, so just remove it.
In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: Fix an uninit variable access bug in qrtr_tx_resume()
Syzbot reported a bug as following:
=====================================================
BUG: KMSAN: uninit-value in qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230
qrtr_tx_resume+0x185/0x1f0 net/qrtr/af_qrtr.c:230
qrtr_endpoint_post+0xf85/0x11b0 net/qrtr/af_qrtr.c:519
qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Uninit was created at:
slab_post_alloc_hook mm/slab.h:766 [inline]
slab_alloc_node mm/slub.c:3452 [inline]
__kmem_cache_alloc_node+0x71f/0xce0 mm/slub.c:3491
__do_kmalloc_node mm/slab_common.c:967 [inline]
__kmalloc_node_track_caller+0x114/0x3b0 mm/slab_common.c:988
kmalloc_reserve net/core/skbuff.c:492 [inline]
__alloc_skb+0x3af/0x8f0 net/core/skbuff.c:565
__netdev_alloc_skb+0x120/0x7d0 net/core/skbuff.c:630
qrtr_endpoint_post+0xbd/0x11b0 net/qrtr/af_qrtr.c:446
qrtr_tun_write_iter+0x270/0x400 net/qrtr/tun.c:108
call_write_iter include/linux/fs.h:2189 [inline]
aio_write+0x63a/0x950 fs/aio.c:1600
io_submit_one+0x1d1c/0x3bf0 fs/aio.c:2019
__do_sys_io_submit fs/aio.c:2078 [inline]
__se_sys_io_submit+0x293/0x770 fs/aio.c:2048
__x64_sys_io_submit+0x92/0xd0 fs/aio.c:2048
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3d/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
It is because that skb->len requires at least sizeof(struct qrtr_ctrl_pkt)
in qrtr_tx_resume(). And skb->len equals to size in qrtr_endpoint_post().
But size is less than sizeof(struct qrtr_ctrl_pkt) when qrtr_cb->type
equals to QRTR_TYPE_RESUME_TX in qrtr_endpoint_post() under the syzbot
scenario. This triggers the uninit variable access bug.
Add size check when qrtr_cb->type equals to QRTR_TYPE_RESUME_TX in
qrtr_endpoint_post() to fix the bug.