In the Linux kernel, the following vulnerability has been resolved:
ax25: properly unshare skbs in ax25_kiss_rcv()
Bernard Pidoux reported a regression apparently caused by commit
c353e8983e0d ("net: introduce per netns packet chains").
skb->dev becomes NULL and we crash in __netif_receive_skb_core().
Before above commit, different kind of bugs or corruptions could happen
without a major crash.
But the root cause is that ax25_kiss_rcv() can queue/mangle input skb
without checking if this skb is shared or not.
Many thanks to Bernard Pidoux for his help, diagnosis and tests.
We had a similar issue years ago fixed with commit 7aaed57c5c28
("phonet: properly unshare skbs in phonet_rcv()").
In the Linux kernel, the following vulnerability has been resolved:
batman-adv: fix OOB read/write in network-coding decode
batadv_nc_skb_decode_packet() trusts coded_len and checks only against
skb->len. XOR starts at sizeof(struct batadv_unicast_packet), reducing
payload headroom, and the source skb length is not verified, allowing an
out-of-bounds read and a small out-of-bounds write.
Validate that coded_len fits within the payload area of both destination
and source sk_buffs before XORing.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: don't reset unchangable mount option in f2fs_remount()
syzbot reports a bug as below:
general protection fault, probably for non-canonical address 0xdffffc0000000009: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:__lock_acquire+0x69/0x2000 kernel/locking/lockdep.c:4942
Call Trace:
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5691
__raw_write_lock include/linux/rwlock_api_smp.h:209 [inline]
_raw_write_lock+0x2e/0x40 kernel/locking/spinlock.c:300
__drop_extent_tree+0x3ac/0x660 fs/f2fs/extent_cache.c:1100
f2fs_drop_extent_tree+0x17/0x30 fs/f2fs/extent_cache.c:1116
f2fs_insert_range+0x2d5/0x3c0 fs/f2fs/file.c:1664
f2fs_fallocate+0x4e4/0x6d0 fs/f2fs/file.c:1838
vfs_fallocate+0x54b/0x6b0 fs/open.c:324
ksys_fallocate fs/open.c:347 [inline]
__do_sys_fallocate fs/open.c:355 [inline]
__se_sys_fallocate fs/open.c:353 [inline]
__x64_sys_fallocate+0xbd/0x100 fs/open.c:353
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root cause is race condition as below:
- since it tries to remount rw filesystem, so that do_remount won't
call sb_prepare_remount_readonly to block fallocate, there may be race
condition in between remount and fallocate.
- in f2fs_remount(), default_options() will reset mount option to default
one, and then update it based on result of parse_options(), so there is
a hole which race condition can happen.
Thread A Thread B
- f2fs_fill_super
- parse_options
- clear_opt(READ_EXTENT_CACHE)
- f2fs_remount
- default_options
- set_opt(READ_EXTENT_CACHE)
- f2fs_fallocate
- f2fs_insert_range
- f2fs_drop_extent_tree
- __drop_extent_tree
- __may_extent_tree
- test_opt(READ_EXTENT_CACHE) return true
- write_lock(&et->lock) access NULL pointer
- parse_options
- clear_opt(READ_EXTENT_CACHE)
In the Linux kernel, the following vulnerability has been resolved:
mfd: arizona: Use pm_runtime_resume_and_get() to prevent refcnt leak
In arizona_clk32k_enable(), we should use pm_runtime_resume_and_get()
as pm_runtime_get_sync() will increase the refcnt even when it
returns an error.
In the Linux kernel, the following vulnerability has been resolved:
PCI/ASPM: Disable ASPM on MFD function removal to avoid use-after-free
Struct pcie_link_state->downstream is a pointer to the pci_dev of function
0. Previously we retained that pointer when removing function 0, and
subsequent ASPM policy changes dereferenced it, resulting in a
use-after-free warning from KASAN, e.g.:
# echo 1 > /sys/bus/pci/devices/0000:03:00.0/remove
# echo powersave > /sys/module/pcie_aspm/parameters/policy
BUG: KASAN: slab-use-after-free in pcie_config_aspm_link+0x42d/0x500
Call Trace:
kasan_report+0xae/0xe0
pcie_config_aspm_link+0x42d/0x500
pcie_aspm_set_policy+0x8e/0x1a0
param_attr_store+0x162/0x2c0
module_attr_store+0x3e/0x80
PCIe spec r6.0, sec 7.5.3.7, recommends that software program the same ASPM
Control value in all functions of multi-function devices.
Disable ASPM and free the pcie_link_state when any child function is
removed so we can discard the dangling pcie_link_state->downstream pointer
and maintain the same ASPM Control configuration for all functions.
[bhelgaas: commit log and comment]
In the Linux kernel, the following vulnerability has been resolved:
firewire: net: fix use after free in fwnet_finish_incoming_packet()
The netif_rx() function frees the skb so we can't dereference it to
save the skb->len.
In the Linux kernel, the following vulnerability has been resolved:
x86/MCE: Always save CS register on AMD Zen IF Poison errors
The Instruction Fetch (IF) units on current AMD Zen-based systems do not
guarantee a synchronous #MC is delivered for poison consumption errors.
Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the
microarchitecture does guarantee that the exception is delivered within
the same context. In other words, the exact rIP is not known, but the
context is known to not have changed.
There is no architecturally-defined method to determine this behavior.
The Code Segment (CS) register is always valid on such IF unit poison
errors regardless of the value of MCG_STATUS[EIPV|RIPV].
Add a quirk to save the CS register for poison consumption from the IF
unit banks.
This is needed to properly determine the context of the error.
Otherwise, the severity grading function will assume the context is
IN_KERNEL due to the m->cs value being 0 (the initialized value). This
leads to unnecessary kernel panics on data poison errors due to the
kernel believing the poison consumption occurred in kernel context.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't check PageError in __extent_writepage
__extent_writepage currenly sets PageError whenever any error happens,
and the also checks for PageError to decide if to call error handling.
This leads to very unclear responsibility for cleaning up on errors.
In the VM and generic writeback helpers the basic idea is that once
I/O is fired off all error handling responsibility is delegated to the
end I/O handler. But if that end I/O handler sets the PageError bit,
and the submitter checks it, the bit could in some cases leak into the
submission context for fast enough I/O.
Fix this by simply not checking PageError and just using the local
ret variable to check for submission errors. This also fundamentally
solves the long problem documented in a comment in __extent_writepage
by never leaking the error bit into the submission context.