In the Linux kernel, the following vulnerability has been resolved:
net/rose: prevent integer overflows in rose_setsockopt()
In case of possible unpredictably large arguments passed to
rose_setsockopt() and multiplied by extra values on top of that,
integer overflows may occur.
Do the safest minimum and fix these issues by checking the
contents of 'opt' and returning -EINVAL if they are too large. Also,
switch to unsigned int and remove useless check for negative 'opt'
in ROSE_IDLE case.
In the Linux kernel, the following vulnerability has been resolved:
md/md-bitmap: Synchronize bitmap_get_stats() with bitmap lifetime
After commit ec6bb299c7c3 ("md/md-bitmap: add 'sync_size' into struct
md_bitmap_stats"), following panic is reported:
Oops: general protection fault, probably for non-canonical address
RIP: 0010:bitmap_get_stats+0x2b/0xa0
Call Trace:
<TASK>
md_seq_show+0x2d2/0x5b0
seq_read_iter+0x2b9/0x470
seq_read+0x12f/0x180
proc_reg_read+0x57/0xb0
vfs_read+0xf6/0x380
ksys_read+0x6c/0xf0
do_syscall_64+0x82/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Root cause is that bitmap_get_stats() can be called at anytime if mddev
is still there, even if bitmap is destroyed, or not fully initialized.
Deferenceing bitmap in this case can crash the kernel. Meanwhile, the
above commit start to deferencing bitmap->storage, make the problem
easier to trigger.
Fix the problem by protecting bitmap_get_stats() with bitmap_info.mutex.
In the Linux kernel, the following vulnerability has been resolved:
net_sched: sch_sfq: don't allow 1 packet limit
The current implementation does not work correctly with a limit of
1. iproute2 actually checks for this and this patch adds the check in
kernel as well.
This fixes the following syzkaller reported crash:
UBSAN: array-index-out-of-bounds in net/sched/sch_sfq.c:210:6
index 65535 is out of range for type 'struct sfq_head[128]'
CPU: 0 PID: 2569 Comm: syz-executor101 Not tainted 5.10.0-smp-DEV #1
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
__dump_stack lib/dump_stack.c:79 [inline]
dump_stack+0x125/0x19f lib/dump_stack.c:120
ubsan_epilogue lib/ubsan.c:148 [inline]
__ubsan_handle_out_of_bounds+0xed/0x120 lib/ubsan.c:347
sfq_link net/sched/sch_sfq.c:210 [inline]
sfq_dec+0x528/0x600 net/sched/sch_sfq.c:238
sfq_dequeue+0x39b/0x9d0 net/sched/sch_sfq.c:500
sfq_reset+0x13/0x50 net/sched/sch_sfq.c:525
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
tbf_reset+0x3d/0x100 net/sched/sch_tbf.c:319
qdisc_reset+0xfe/0x510 net/sched/sch_generic.c:1026
dev_reset_queue+0x8c/0x140 net/sched/sch_generic.c:1296
netdev_for_each_tx_queue include/linux/netdevice.h:2350 [inline]
dev_deactivate_many+0x6dc/0xc20 net/sched/sch_generic.c:1362
__dev_close_many+0x214/0x350 net/core/dev.c:1468
dev_close_many+0x207/0x510 net/core/dev.c:1506
unregister_netdevice_many+0x40f/0x16b0 net/core/dev.c:10738
unregister_netdevice_queue+0x2be/0x310 net/core/dev.c:10695
unregister_netdevice include/linux/netdevice.h:2893 [inline]
__tun_detach+0x6b6/0x1600 drivers/net/tun.c:689
tun_detach drivers/net/tun.c:705 [inline]
tun_chr_close+0x104/0x1b0 drivers/net/tun.c:3640
__fput+0x203/0x840 fs/file_table.c:280
task_work_run+0x129/0x1b0 kernel/task_work.c:185
exit_task_work include/linux/task_work.h:33 [inline]
do_exit+0x5ce/0x2200 kernel/exit.c:931
do_group_exit+0x144/0x310 kernel/exit.c:1046
__do_sys_exit_group kernel/exit.c:1057 [inline]
__se_sys_exit_group kernel/exit.c:1055 [inline]
__x64_sys_exit_group+0x3b/0x40 kernel/exit.c:1055
do_syscall_64+0x6c/0xd0
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fe5e7b52479
Code: Unable to access opcode bytes at RIP 0x7fe5e7b5244f.
RSP: 002b:00007ffd3c800398 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fe5e7b52479
RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000
RBP: 00007fe5e7bcd2d0 R08: ffffffffffffffb8 R09: 0000000000000014
R10: 0000000000000000 R11: 0000000000000246 R12: 00007fe5e7bcd2d0
R13: 0000000000000000 R14: 00007fe5e7bcdd20 R15: 00007fe5e7b24270
The crash can be also be reproduced with the following (with a tc
recompiled to allow for sfq limits of 1):
tc qdisc add dev dummy0 handle 1: root tbf rate 1Kbit burst 100b lat 1s
../iproute2-6.9.0/tc/tc qdisc add dev dummy0 handle 2: parent 1:10 sfq limit 1
ifconfig dummy0 up
ping -I dummy0 -f -c2 -W0.1 8.8.8.8
sleep 1
Scenario that triggers the crash:
* the first packet is sent and queued in TBF and SFQ; qdisc qlen is 1
* TBF dequeues: it peeks from SFQ which moves the packet to the
gso_skb list and keeps qdisc qlen set to 1. TBF is out of tokens so
it schedules itself for later.
* the second packet is sent and TBF tries to queues it to SFQ. qdisc
qlen is now 2 and because the SFQ limit is 1 the packet is dropped
by SFQ. At this point qlen is 1, and all of the SFQ slots are empty,
however q->tail is not NULL.
At this point, assuming no more packets are queued, when sch_dequeue
runs again it will decrement the qlen for the current empty slot
causing an underflow and the subsequent out of bounds access.
In the Linux kernel, the following vulnerability has been resolved:
media: uvcvideo: Fix double free in error path
If the uvc_status_init() function fails to allocate the int_urb, it will
free the dev->status pointer but doesn't reset the pointer to NULL. This
results in the kfree() call in uvc_status_cleanup() trying to
double-free the memory. Fix it by resetting the dev->status pointer to
NULL after freeing it.
Reviewed by: Ricardo Ribalda <ribalda@chromium.org>
In the Linux kernel, the following vulnerability has been resolved:
udp: Deal with race between UDP socket address change and rehash
If a UDP socket changes its local address while it's receiving
datagrams, as a result of connect(), there is a period during which
a lookup operation might fail to find it, after the address is changed
but before the secondary hash (port and address) and the four-tuple
hash (local and remote ports and addresses) are updated.
Secondary hash chains were introduced by commit 30fff9231fad ("udp:
bind() optimisation") and, as a result, a rehash operation became
needed to make a bound socket reachable again after a connect().
This operation was introduced by commit 719f835853a9 ("udp: add
rehash on connect()") which isn't however a complete fix: the
socket will be found once the rehashing completes, but not while
it's pending.
This is noticeable with a socat(1) server in UDP4-LISTEN mode, and a
client sending datagrams to it. After the server receives the first
datagram (cf. _xioopen_ipdgram_listen()), it issues a connect() to
the address of the sender, in order to set up a directed flow.
Now, if the client, running on a different CPU thread, happens to
send a (subsequent) datagram while the server's socket changes its
address, but is not rehashed yet, this will result in a failed
lookup and a port unreachable error delivered to the client, as
apparent from the following reproducer:
LEN=$(($(cat /proc/sys/net/core/wmem_default) / 4))
dd if=/dev/urandom bs=1 count=${LEN} of=tmp.in
while :; do
taskset -c 1 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,trunc &
sleep 0.1 || sleep 1
taskset -c 2 socat OPEN:tmp.in UDP4:localhost:1337,shut-null
wait
done
where the client will eventually get ECONNREFUSED on a write()
(typically the second or third one of a given iteration):
2024/11/13 21:28:23 socat[46901] E write(6, 0x556db2e3c000, 8192): Connection refused
This issue was first observed as a seldom failure in Podman's tests
checking UDP functionality while using pasta(1) to connect the
container's network namespace, which leads us to a reproducer with
the lookup error resulting in an ICMP packet on a tap device:
LOCAL_ADDR="$(ip -j -4 addr show|jq -rM '.[] | .addr_info[0] | select(.scope == "global").local')"
while :; do
./pasta --config-net -p pasta.pcap -u 1337 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,trunc &
sleep 0.2 || sleep 1
socat OPEN:tmp.in UDP4:${LOCAL_ADDR}:1337,shut-null
wait
cmp tmp.in tmp.out
done
Once this fails:
tmp.in tmp.out differ: char 8193, line 29
we can finally have a look at what's going on:
$ tshark -r pasta.pcap
1 0.000000 :: ? ff02::16 ICMPv6 110 Multicast Listener Report Message v2
2 0.168690 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
3 0.168767 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
4 0.168806 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
5 0.168827 c6:47:05:8d:dc:04 ? Broadcast ARP 42 Who has 88.198.0.161? Tell 88.198.0.164
6 0.168851 9a:55:9a:55:9a:55 ? c6:47:05:8d:dc:04 ARP 42 88.198.0.161 is at 9a:55:9a:55:9a:55
7 0.168875 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
8 0.168896 88.198.0.164 ? 88.198.0.161 ICMP 590 Destination unreachable (Port unreachable)
9 0.168926 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
10 0.168959 88.198.0.161 ? 88.198.0.164 UDP 8234 60260 ? 1337 Len=8192
11 0.168989 88.198.0.161 ? 88.198.0.164 UDP 4138 60260 ? 1337 Len=4096
12 0.169010 88.198.0.161 ? 88.198.0.164 UDP 42 60260 ? 1337 Len=0
On the third datagram received, the network namespace of the container
initiates an ARP lookup to deliver the ICMP message.
In another variant of this reproducer, starting the client with:
strace -f pasta --config-net -u 1337 socat UDP4-LISTEN:1337,null-eof OPEN:tmp.out,create,tru
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do proper folio cleanup when run_delalloc_nocow() failed
[BUG]
With CONFIG_DEBUG_VM set, test case generic/476 has some chance to crash
with the following VM_BUG_ON_FOLIO():
BTRFS error (device dm-3): cow_file_range failed, start 1146880 end 1253375 len 106496 ret -28
BTRFS error (device dm-3): run_delalloc_nocow failed, start 1146880 end 1253375 len 106496 ret -28
page: refcount:4 mapcount:0 mapping:00000000592787cc index:0x12 pfn:0x10664
aops:btrfs_aops [btrfs] ino:101 dentry name(?):"f1774"
flags: 0x2fffff80004028(uptodate|lru|private|node=0|zone=2|lastcpupid=0xfffff)
page dumped because: VM_BUG_ON_FOLIO(!folio_test_locked(folio))
------------[ cut here ]------------
kernel BUG at mm/page-writeback.c:2992!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
CPU: 2 UID: 0 PID: 3943513 Comm: kworker/u24:15 Tainted: G OE 6.12.0-rc7-custom+ #87
Tainted: [O]=OOT_MODULE, [E]=UNSIGNED_MODULE
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
pc : folio_clear_dirty_for_io+0x128/0x258
lr : folio_clear_dirty_for_io+0x128/0x258
Call trace:
folio_clear_dirty_for_io+0x128/0x258
btrfs_folio_clamp_clear_dirty+0x80/0xd0 [btrfs]
__process_folios_contig+0x154/0x268 [btrfs]
extent_clear_unlock_delalloc+0x5c/0x80 [btrfs]
run_delalloc_nocow+0x5f8/0x760 [btrfs]
btrfs_run_delalloc_range+0xa8/0x220 [btrfs]
writepage_delalloc+0x230/0x4c8 [btrfs]
extent_writepage+0xb8/0x358 [btrfs]
extent_write_cache_pages+0x21c/0x4e8 [btrfs]
btrfs_writepages+0x94/0x150 [btrfs]
do_writepages+0x74/0x190
filemap_fdatawrite_wbc+0x88/0xc8
start_delalloc_inodes+0x178/0x3a8 [btrfs]
btrfs_start_delalloc_roots+0x174/0x280 [btrfs]
shrink_delalloc+0x114/0x280 [btrfs]
flush_space+0x250/0x2f8 [btrfs]
btrfs_async_reclaim_data_space+0x180/0x228 [btrfs]
process_one_work+0x164/0x408
worker_thread+0x25c/0x388
kthread+0x100/0x118
ret_from_fork+0x10/0x20
Code: 910a8021 a90363f7 a9046bf9 94012379 (d4210000)
---[ end trace 0000000000000000 ]---
[CAUSE]
The first two lines of extra debug messages show the problem is caused
by the error handling of run_delalloc_nocow().
E.g. we have the following dirtied range (4K blocksize 4K page size):
0 16K 32K
|//////////////////////////////////////|
| Pre-allocated |
And the range [0, 16K) has a preallocated extent.
- Enter run_delalloc_nocow() for range [0, 16K)
Which found range [0, 16K) is preallocated, can do the proper NOCOW
write.
- Enter fallback_to_fow() for range [16K, 32K)
Since the range [16K, 32K) is not backed by preallocated extent, we
have to go COW.
- cow_file_range() failed for range [16K, 32K)
So cow_file_range() will do the clean up by clearing folio dirty,
unlock the folios.
Now the folios in range [16K, 32K) is unlocked.
- Enter extent_clear_unlock_delalloc() from run_delalloc_nocow()
Which is called with PAGE_START_WRITEBACK to start page writeback.
But folios can only be marked writeback when it's properly locked,
thus this triggered the VM_BUG_ON_FOLIO().
Furthermore there is another hidden but common bug that
run_delalloc_nocow() is not clearing the folio dirty flags in its error
handling path.
This is the common bug shared between run_delalloc_nocow() and
cow_file_range().
[FIX]
- Clear folio dirty for range [@start, @cur_offset)
Introduce a helper, cleanup_dirty_folios(), which
will find and lock the folio in the range, clear the dirty flag and
start/end the writeback, with the extra handling for the
@locked_folio.
- Introduce a helper to clear folio dirty, start and end writeback
- Introduce a helper to record the last failed COW range end
This is to trace which range we should skip, to avoid double
unlocking.
- Skip the failed COW range for the e
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do proper folio cleanup when cow_file_range() failed
[BUG]
When testing with COW fixup marked as BUG_ON() (this is involved with the
new pin_user_pages*() change, which should not result new out-of-band
dirty pages), I hit a crash triggered by the BUG_ON() from hitting COW
fixup path.
This BUG_ON() happens just after a failed btrfs_run_delalloc_range():
BTRFS error (device dm-2): failed to run delalloc range, root 348 ino 405 folio 65536 submit_bitmap 6-15 start 90112 len 106496: -28
------------[ cut here ]------------
kernel BUG at fs/btrfs/extent_io.c:1444!
Internal error: Oops - BUG: 00000000f2000800 [#1] SMP
CPU: 0 UID: 0 PID: 434621 Comm: kworker/u24:8 Tainted: G OE 6.12.0-rc7-custom+ #86
Hardware name: QEMU KVM Virtual Machine, BIOS unknown 2/2/2022
Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
pc : extent_writepage_io+0x2d4/0x308 [btrfs]
lr : extent_writepage_io+0x2d4/0x308 [btrfs]
Call trace:
extent_writepage_io+0x2d4/0x308 [btrfs]
extent_writepage+0x218/0x330 [btrfs]
extent_write_cache_pages+0x1d4/0x4b0 [btrfs]
btrfs_writepages+0x94/0x150 [btrfs]
do_writepages+0x74/0x190
filemap_fdatawrite_wbc+0x88/0xc8
start_delalloc_inodes+0x180/0x3b0 [btrfs]
btrfs_start_delalloc_roots+0x174/0x280 [btrfs]
shrink_delalloc+0x114/0x280 [btrfs]
flush_space+0x250/0x2f8 [btrfs]
btrfs_async_reclaim_data_space+0x180/0x228 [btrfs]
process_one_work+0x164/0x408
worker_thread+0x25c/0x388
kthread+0x100/0x118
ret_from_fork+0x10/0x20
Code: aa1403e1 9402f3ef aa1403e0 9402f36f (d4210000)
---[ end trace 0000000000000000 ]---
[CAUSE]
That failure is mostly from cow_file_range(), where we can hit -ENOSPC.
Although the -ENOSPC is already a bug related to our space reservation
code, let's just focus on the error handling.
For example, we have the following dirty range [0, 64K) of an inode,
with 4K sector size and 4K page size:
0 16K 32K 48K 64K
|///////////////////////////////////////|
|#######################################|
Where |///| means page are still dirty, and |###| means the extent io
tree has EXTENT_DELALLOC flag.
- Enter extent_writepage() for page 0
- Enter btrfs_run_delalloc_range() for range [0, 64K)
- Enter cow_file_range() for range [0, 64K)
- Function btrfs_reserve_extent() only reserved one 16K extent
So we created extent map and ordered extent for range [0, 16K)
0 16K 32K 48K 64K
|////////|//////////////////////////////|
|<- OE ->|##############################|
And range [0, 16K) has its delalloc flag cleared.
But since we haven't yet submit any bio, involved 4 pages are still
dirty.
- Function btrfs_reserve_extent() returns with -ENOSPC
Now we have to run error cleanup, which will clear all
EXTENT_DELALLOC* flags and clear the dirty flags for the remaining
ranges:
0 16K 32K 48K 64K
|////////| |
| | |
Note that range [0, 16K) still has its pages dirty.
- Some time later, writeback is triggered again for the range [0, 16K)
since the page range still has dirty flags.
- btrfs_run_delalloc_range() will do nothing because there is no
EXTENT_DELALLOC flag.
- extent_writepage_io() finds page 0 has no ordered flag
Which falls into the COW fixup path, triggering the BUG_ON().
Unfortunately this error handling bug dates back to the introduction of
btrfs. Thankfully with the abuse of COW fixup, at least it won't crash
the kernel.
[FIX]
Instead of immediately unlocking the extent and folios, we keep the extent
and folios locked until either erroring out or the whole delalloc range
finished.
When the whole delalloc range finished without error, we just unlock the
whole range with PAGE_SET_ORDERED (and PAGE_UNLOCK for !keep_locked
cases)
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix signed integer overflow in l2tp_ip6_sendmsg
When len >= INT_MAX - transhdrlen, ulen = len + transhdrlen will be
overflow. To fix, we can follow what udpv6 does and subtract the
transhdrlen from the max.
In the Linux kernel, the following vulnerability has been resolved:
ipv6: Fix signed integer overflow in __ip6_append_data
Resurrect ubsan overflow checks and ubsan report this warning,
fix it by change the variable [length] type to size_t.
UBSAN: signed-integer-overflow in net/ipv6/ip6_output.c:1489:19
2147479552 + 8567 cannot be represented in type 'int'
CPU: 0 PID: 253 Comm: err Not tainted 5.16.0+ #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x214/0x230
show_stack+0x30/0x78
dump_stack_lvl+0xf8/0x118
dump_stack+0x18/0x30
ubsan_epilogue+0x18/0x60
handle_overflow+0xd0/0xf0
__ubsan_handle_add_overflow+0x34/0x44
__ip6_append_data.isra.48+0x1598/0x1688
ip6_append_data+0x128/0x260
udpv6_sendmsg+0x680/0xdd0
inet6_sendmsg+0x54/0x90
sock_sendmsg+0x70/0x88
____sys_sendmsg+0xe8/0x368
___sys_sendmsg+0x98/0xe0
__sys_sendmmsg+0xf4/0x3b8
__arm64_sys_sendmmsg+0x34/0x48
invoke_syscall+0x64/0x160
el0_svc_common.constprop.4+0x124/0x300
do_el0_svc+0x44/0xc8
el0_svc+0x3c/0x1e8
el0t_64_sync_handler+0x88/0xb0
el0t_64_sync+0x16c/0x170
Changes since v1:
-Change the variable [length] type to unsigned, as Eric Dumazet suggested.
Changes since v2:
-Don't change exthdrlen type in ip6_make_skb, as Paolo Abeni suggested.
Changes since v3:
-Don't change ulen type in udpv6_sendmsg and l2tp_ip6_sendmsg, as
Jakub Kicinski suggested.