libcontainer/user/user.go in runC before 0.1.0, as used in Docker before 1.11.2, improperly treats a numeric UID as a potential username, which allows local users to gain privileges via a numeric username in the password file in a container.
Docker Engine before 1.6.1 allows local users to set arbitrary Linux Security Modules (LSM) and docker_t policies via an image that allows volumes to override files in /proc.
Docker Engine before 1.6.1 uses weak permissions for (1) /proc/asound, (2) /proc/timer_stats, (3) /proc/latency_stats, and (4) /proc/fs, which allows local users to modify the host, obtain sensitive information, and perform protocol downgrade attacks via a crafted image.
Libcontainer 1.6.0, as used in Docker Engine, allows local users to escape containerization ("mount namespace breakout") and write to arbitrary file on the host system via a symlink attack in an image when respawning a container.
Libcontainer and Docker Engine before 1.6.1 opens the file-descriptor passed to the pid-1 process before performing the chroot, which allows local users to gain privileges via a symlink attack in an image.
Docker before 1.3.3 does not properly validate image IDs, which allows remote attackers to conduct path traversal attacks and spoof repositories via a crafted image in a (1) "docker load" operation or (2) "registry communications."
Docker 1.3.2 allows remote attackers to execute arbitrary code with root privileges via a crafted (1) image or (2) build in a Dockerfile in an LZMA (.xz) archive, related to the chroot for archive extraction.
Docker 1.3.0 through 1.3.1 allows remote attackers to modify the default run profile of image containers and possibly bypass the container by applying unspecified security options to an image.
Docker before 1.3.2 allows remote attackers to write to arbitrary files and execute arbitrary code via a (1) symlink or (2) hard link attack in an image archive in a (a) pull or (b) load operation.
Docker before 1.3.1 and docker-py before 0.5.3 fall back to HTTP when the HTTPS connection to the registry fails, which allows man-in-the-middle attackers to conduct downgrade attacks and obtain authentication and image data by leveraging a network position between the client and the registry to block HTTPS traffic.