Vulnerabilities
Vulnerable Software
Debian:  Security Vulnerabilities
In the Linux kernel, the following vulnerability has been resolved: aoe: clean device rq_list in aoedev_downdev() An aoe device's rq_list contains accepted block requests that are waiting to be transmitted to the aoe target. This queue was added as part of the conversion to blk_mq. However, the queue was not cleaned out when an aoe device is downed which caused blk_mq_freeze_queue() to sleep indefinitely waiting for those requests to complete, causing a hang. This fix cleans out the queue before calling blk_mq_freeze_queue().
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: arm64/ptrace: Fix stack-out-of-bounds read in regs_get_kernel_stack_nth() KASAN reports a stack-out-of-bounds read in regs_get_kernel_stack_nth(). Call Trace: [ 97.283505] BUG: KASAN: stack-out-of-bounds in regs_get_kernel_stack_nth+0xa8/0xc8 [ 97.284677] Read of size 8 at addr ffff800089277c10 by task 1.sh/2550 [ 97.285732] [ 97.286067] CPU: 7 PID: 2550 Comm: 1.sh Not tainted 6.6.0+ #11 [ 97.287032] Hardware name: linux,dummy-virt (DT) [ 97.287815] Call trace: [ 97.288279] dump_backtrace+0xa0/0x128 [ 97.288946] show_stack+0x20/0x38 [ 97.289551] dump_stack_lvl+0x78/0xc8 [ 97.290203] print_address_description.constprop.0+0x84/0x3c8 [ 97.291159] print_report+0xb0/0x280 [ 97.291792] kasan_report+0x84/0xd0 [ 97.292421] __asan_load8+0x9c/0xc0 [ 97.293042] regs_get_kernel_stack_nth+0xa8/0xc8 [ 97.293835] process_fetch_insn+0x770/0xa30 [ 97.294562] kprobe_trace_func+0x254/0x3b0 [ 97.295271] kprobe_dispatcher+0x98/0xe0 [ 97.295955] kprobe_breakpoint_handler+0x1b0/0x210 [ 97.296774] call_break_hook+0xc4/0x100 [ 97.297451] brk_handler+0x24/0x78 [ 97.298073] do_debug_exception+0xac/0x178 [ 97.298785] el1_dbg+0x70/0x90 [ 97.299344] el1h_64_sync_handler+0xcc/0xe8 [ 97.300066] el1h_64_sync+0x78/0x80 [ 97.300699] kernel_clone+0x0/0x500 [ 97.301331] __arm64_sys_clone+0x70/0x90 [ 97.302084] invoke_syscall+0x68/0x198 [ 97.302746] el0_svc_common.constprop.0+0x11c/0x150 [ 97.303569] do_el0_svc+0x38/0x50 [ 97.304164] el0_svc+0x44/0x1d8 [ 97.304749] el0t_64_sync_handler+0x100/0x130 [ 97.305500] el0t_64_sync+0x188/0x190 [ 97.306151] [ 97.306475] The buggy address belongs to stack of task 1.sh/2550 [ 97.307461] and is located at offset 0 in frame: [ 97.308257] __se_sys_clone+0x0/0x138 [ 97.308910] [ 97.309241] This frame has 1 object: [ 97.309873] [48, 184) 'args' [ 97.309876] [ 97.310749] The buggy address belongs to the virtual mapping at [ 97.310749] [ffff800089270000, ffff800089279000) created by: [ 97.310749] dup_task_struct+0xc0/0x2e8 [ 97.313347] [ 97.313674] The buggy address belongs to the physical page: [ 97.314604] page: refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x14f69a [ 97.315885] flags: 0x15ffffe00000000(node=1|zone=2|lastcpupid=0xfffff) [ 97.316957] raw: 015ffffe00000000 0000000000000000 dead000000000122 0000000000000000 [ 97.318207] raw: 0000000000000000 0000000000000000 00000001ffffffff 0000000000000000 [ 97.319445] page dumped because: kasan: bad access detected [ 97.320371] [ 97.320694] Memory state around the buggy address: [ 97.321511] ffff800089277b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 97.322681] ffff800089277b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [ 97.323846] >ffff800089277c00: 00 00 f1 f1 f1 f1 f1 f1 00 00 00 00 00 00 00 00 [ 97.325023] ^ [ 97.325683] ffff800089277c80: 00 00 00 00 00 00 00 00 00 f3 f3 f3 f3 f3 f3 f3 [ 97.326856] ffff800089277d00: f3 f3 00 00 00 00 00 00 00 00 00 00 00 00 00 00 This issue seems to be related to the behavior of some gcc compilers and was also fixed on the s390 architecture before: commit d93a855c31b7 ("s390/ptrace: Avoid KASAN false positives in regs_get_kernel_stack_nth()") As described in that commit, regs_get_kernel_stack_nth() has confirmed that `addr` is on the stack, so reading the value at `*addr` should be allowed. Use READ_ONCE_NOCHECK() helper to silence the KASAN check for this case. [will: Use '*addr' as the argument to READ_ONCE_NOCHECK()]
CVSS Score
7.1
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: fbdev: core: fbcvt: avoid division by 0 in fb_cvt_hperiod() In fb_find_mode_cvt(), iff mode->refresh somehow happens to be 0x80000000, cvt.f_refresh will become 0 when multiplying it by 2 due to overflow. It's then passed to fb_cvt_hperiod(), where it's used as a divider -- division by 0 will result in kernel oops. Add a sanity check for cvt.f_refresh to avoid such overflow... Found by Linux Verification Center (linuxtesting.org) with the Svace static analysis tool.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: bus: fsl-mc: fix double-free on mc_dev The blamed commit tried to simplify how the deallocations are done but, in the process, introduced a double-free on the mc_dev variable. In case the MC device is a DPRC, a new mc_bus is allocated and the mc_dev variable is just a reference to one of its fields. In this circumstance, on the error path only the mc_bus should be freed. This commit introduces back the following checkpatch warning which is a false-positive. WARNING: kfree(NULL) is safe and this check is probably not required + if (mc_bus) + kfree(mc_bus);
CVSS Score
7.8
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pp: Fix potential NULL pointer dereference in atomctrl_initialize_mc_reg_table The function atomctrl_initialize_mc_reg_table() and atomctrl_initialize_mc_reg_table_v2_2() does not check the return value of smu_atom_get_data_table(). If smu_atom_get_data_table() fails to retrieve vram_info, it returns NULL which is later dereferenced.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix NULL pointer deference on eir_get_service_data The len parameter is considered optional so it can be NULL so it cannot be used for skipping to next entry of EIR_SERVICE_DATA.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: ptp: remove ptp->n_vclocks check logic in ptp_vclock_in_use() There is no disagreement that we should check both ptp->is_virtual_clock and ptp->n_vclocks to check if the ptp virtual clock is in use. However, when we acquire ptp->n_vclocks_mux to read ptp->n_vclocks in ptp_vclock_in_use(), we observe a recursive lock in the call trace starting from n_vclocks_store(). ============================================ WARNING: possible recursive locking detected 6.15.0-rc6 #1 Not tainted -------------------------------------------- syz.0.1540/13807 is trying to acquire lock: ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: ptp_vclock_in_use drivers/ptp/ptp_private.h:103 [inline] ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: ptp_clock_unregister+0x21/0x250 drivers/ptp/ptp_clock.c:415 but task is already holding lock: ffff888030704868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at: n_vclocks_store+0xf1/0x6d0 drivers/ptp/ptp_sysfs.c:215 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(&ptp->n_vclocks_mux); lock(&ptp->n_vclocks_mux); *** DEADLOCK *** .... ============================================ The best way to solve this is to remove the logic that checks ptp->n_vclocks in ptp_vclock_in_use(). The reason why this is appropriate is that any path that uses ptp->n_vclocks must unconditionally check if ptp->n_vclocks is greater than 0 before unregistering vclocks, and all functions are already written this way. And in the function that uses ptp->n_vclocks, we already get ptp->n_vclocks_mux before unregistering vclocks. Therefore, we need to remove the redundant check for ptp->n_vclocks in ptp_vclock_in_use() to prevent recursive locking.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: seg6: Fix validation of nexthop addresses The kernel currently validates that the length of the provided nexthop address does not exceed the specified length. This can lead to the kernel reading uninitialized memory if user space provided a shorter length than the specified one. Fix by validating that the provided length exactly matches the specified one.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: EDAC/skx_common: Fix general protection fault After loading i10nm_edac (which automatically loads skx_edac_common), if unload only i10nm_edac, then reload it and perform error injection testing, a general protection fault may occur: mce: [Hardware Error]: Machine check events logged Oops: general protection fault ... ... Workqueue: events mce_gen_pool_process RIP: 0010:string+0x53/0xe0 ... Call Trace: <TASK> ? die_addr+0x37/0x90 ? exc_general_protection+0x1e7/0x3f0 ? asm_exc_general_protection+0x26/0x30 ? string+0x53/0xe0 vsnprintf+0x23e/0x4c0 snprintf+0x4d/0x70 skx_adxl_decode+0x16a/0x330 [skx_edac_common] skx_mce_check_error.part.0+0xf8/0x220 [skx_edac_common] skx_mce_check_error+0x17/0x20 [skx_edac_common] ... The issue arose was because the variable 'adxl_component_count' (inside skx_edac_common), which counts the ADXL components, was not reset. During the reloading of i10nm_edac, the count was incremented by the actual number of ADXL components again, resulting in a count that was double the real number of ADXL components. This led to an out-of-bounds reference to the ADXL component array, causing the general protection fault above. Fix this issue by resetting the 'adxl_component_count' in adxl_put(), which is called during the unloading of {skx,i10nm}_edac.
CVSS Score
7.8
EPSS Score
0.0
Published
2025-07-10
In the Linux kernel, the following vulnerability has been resolved: crypto: sun8i-ce-cipher - fix error handling in sun8i_ce_cipher_prepare() Fix two DMA cleanup issues on the error path in sun8i_ce_cipher_prepare(): 1] If dma_map_sg() fails for areq->dst, the device driver would try to free DMA memory it has not allocated in the first place. To fix this, on the "theend_sgs" error path, call dma unmap only if the corresponding dma map was successful. 2] If the dma_map_single() call for the IV fails, the device driver would try to free an invalid DMA memory address on the "theend_iv" path: ------------[ cut here ]------------ DMA-API: sun8i-ce 1904000.crypto: device driver tries to free an invalid DMA memory address WARNING: CPU: 2 PID: 69 at kernel/dma/debug.c:968 check_unmap+0x123c/0x1b90 Modules linked in: skcipher_example(O+) CPU: 2 UID: 0 PID: 69 Comm: 1904000.crypto- Tainted: G O 6.15.0-rc3+ #24 PREEMPT Tainted: [O]=OOT_MODULE Hardware name: OrangePi Zero2 (DT) pc : check_unmap+0x123c/0x1b90 lr : check_unmap+0x123c/0x1b90 ... Call trace: check_unmap+0x123c/0x1b90 (P) debug_dma_unmap_page+0xac/0xc0 dma_unmap_page_attrs+0x1f4/0x5fc sun8i_ce_cipher_do_one+0x1bd4/0x1f40 crypto_pump_work+0x334/0x6e0 kthread_worker_fn+0x21c/0x438 kthread+0x374/0x664 ret_from_fork+0x10/0x20 ---[ end trace 0000000000000000 ]--- To fix this, check for !dma_mapping_error() before calling dma_unmap_single() on the "theend_iv" path.
CVSS Score
5.5
EPSS Score
0.0
Published
2025-07-10


Contact Us

Shodan ® - All rights reserved