In the Linux kernel, the following vulnerability has been resolved:
aoe: clean device rq_list in aoedev_downdev()
An aoe device's rq_list contains accepted block requests that are
waiting to be transmitted to the aoe target. This queue was added as
part of the conversion to blk_mq. However, the queue was not cleaned out
when an aoe device is downed which caused blk_mq_freeze_queue() to sleep
indefinitely waiting for those requests to complete, causing a hang. This
fix cleans out the queue before calling blk_mq_freeze_queue().
In the Linux kernel, the following vulnerability has been resolved:
fbdev: core: fbcvt: avoid division by 0 in fb_cvt_hperiod()
In fb_find_mode_cvt(), iff mode->refresh somehow happens to be 0x80000000,
cvt.f_refresh will become 0 when multiplying it by 2 due to overflow. It's
then passed to fb_cvt_hperiod(), where it's used as a divider -- division
by 0 will result in kernel oops. Add a sanity check for cvt.f_refresh to
avoid such overflow...
Found by Linux Verification Center (linuxtesting.org) with the Svace static
analysis tool.
In the Linux kernel, the following vulnerability has been resolved:
bus: fsl-mc: fix double-free on mc_dev
The blamed commit tried to simplify how the deallocations are done but,
in the process, introduced a double-free on the mc_dev variable.
In case the MC device is a DPRC, a new mc_bus is allocated and the
mc_dev variable is just a reference to one of its fields. In this
circumstance, on the error path only the mc_bus should be freed.
This commit introduces back the following checkpatch warning which is a
false-positive.
WARNING: kfree(NULL) is safe and this check is probably not required
+ if (mc_bus)
+ kfree(mc_bus);
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pp: Fix potential NULL pointer dereference in atomctrl_initialize_mc_reg_table
The function atomctrl_initialize_mc_reg_table() and
atomctrl_initialize_mc_reg_table_v2_2() does not check the return
value of smu_atom_get_data_table(). If smu_atom_get_data_table()
fails to retrieve vram_info, it returns NULL which is later
dereferenced.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix NULL pointer deference on eir_get_service_data
The len parameter is considered optional so it can be NULL so it cannot
be used for skipping to next entry of EIR_SERVICE_DATA.
In the Linux kernel, the following vulnerability has been resolved:
ptp: remove ptp->n_vclocks check logic in ptp_vclock_in_use()
There is no disagreement that we should check both ptp->is_virtual_clock
and ptp->n_vclocks to check if the ptp virtual clock is in use.
However, when we acquire ptp->n_vclocks_mux to read ptp->n_vclocks in
ptp_vclock_in_use(), we observe a recursive lock in the call trace
starting from n_vclocks_store().
============================================
WARNING: possible recursive locking detected
6.15.0-rc6 #1 Not tainted
--------------------------------------------
syz.0.1540/13807 is trying to acquire lock:
ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
ptp_vclock_in_use drivers/ptp/ptp_private.h:103 [inline]
ffff888035a24868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
ptp_clock_unregister+0x21/0x250 drivers/ptp/ptp_clock.c:415
but task is already holding lock:
ffff888030704868 (&ptp->n_vclocks_mux){+.+.}-{4:4}, at:
n_vclocks_store+0xf1/0x6d0 drivers/ptp/ptp_sysfs.c:215
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&ptp->n_vclocks_mux);
lock(&ptp->n_vclocks_mux);
*** DEADLOCK ***
....
============================================
The best way to solve this is to remove the logic that checks
ptp->n_vclocks in ptp_vclock_in_use().
The reason why this is appropriate is that any path that uses
ptp->n_vclocks must unconditionally check if ptp->n_vclocks is greater
than 0 before unregistering vclocks, and all functions are already
written this way. And in the function that uses ptp->n_vclocks, we
already get ptp->n_vclocks_mux before unregistering vclocks.
Therefore, we need to remove the redundant check for ptp->n_vclocks in
ptp_vclock_in_use() to prevent recursive locking.
In the Linux kernel, the following vulnerability has been resolved:
seg6: Fix validation of nexthop addresses
The kernel currently validates that the length of the provided nexthop
address does not exceed the specified length. This can lead to the
kernel reading uninitialized memory if user space provided a shorter
length than the specified one.
Fix by validating that the provided length exactly matches the specified
one.
In the Linux kernel, the following vulnerability has been resolved:
EDAC/skx_common: Fix general protection fault
After loading i10nm_edac (which automatically loads skx_edac_common), if
unload only i10nm_edac, then reload it and perform error injection testing,
a general protection fault may occur:
mce: [Hardware Error]: Machine check events logged
Oops: general protection fault ...
...
Workqueue: events mce_gen_pool_process
RIP: 0010:string+0x53/0xe0
...
Call Trace:
<TASK>
? die_addr+0x37/0x90
? exc_general_protection+0x1e7/0x3f0
? asm_exc_general_protection+0x26/0x30
? string+0x53/0xe0
vsnprintf+0x23e/0x4c0
snprintf+0x4d/0x70
skx_adxl_decode+0x16a/0x330 [skx_edac_common]
skx_mce_check_error.part.0+0xf8/0x220 [skx_edac_common]
skx_mce_check_error+0x17/0x20 [skx_edac_common]
...
The issue arose was because the variable 'adxl_component_count' (inside
skx_edac_common), which counts the ADXL components, was not reset. During
the reloading of i10nm_edac, the count was incremented by the actual number
of ADXL components again, resulting in a count that was double the real
number of ADXL components. This led to an out-of-bounds reference to the
ADXL component array, causing the general protection fault above.
Fix this issue by resetting the 'adxl_component_count' in adxl_put(),
which is called during the unloading of {skx,i10nm}_edac.
In the Linux kernel, the following vulnerability has been resolved:
crypto: sun8i-ce-cipher - fix error handling in sun8i_ce_cipher_prepare()
Fix two DMA cleanup issues on the error path in sun8i_ce_cipher_prepare():
1] If dma_map_sg() fails for areq->dst, the device driver would try to free
DMA memory it has not allocated in the first place. To fix this, on the
"theend_sgs" error path, call dma unmap only if the corresponding dma
map was successful.
2] If the dma_map_single() call for the IV fails, the device driver would
try to free an invalid DMA memory address on the "theend_iv" path:
------------[ cut here ]------------
DMA-API: sun8i-ce 1904000.crypto: device driver tries to free an invalid DMA memory address
WARNING: CPU: 2 PID: 69 at kernel/dma/debug.c:968 check_unmap+0x123c/0x1b90
Modules linked in: skcipher_example(O+)
CPU: 2 UID: 0 PID: 69 Comm: 1904000.crypto- Tainted: G O 6.15.0-rc3+ #24 PREEMPT
Tainted: [O]=OOT_MODULE
Hardware name: OrangePi Zero2 (DT)
pc : check_unmap+0x123c/0x1b90
lr : check_unmap+0x123c/0x1b90
...
Call trace:
check_unmap+0x123c/0x1b90 (P)
debug_dma_unmap_page+0xac/0xc0
dma_unmap_page_attrs+0x1f4/0x5fc
sun8i_ce_cipher_do_one+0x1bd4/0x1f40
crypto_pump_work+0x334/0x6e0
kthread_worker_fn+0x21c/0x438
kthread+0x374/0x664
ret_from_fork+0x10/0x20
---[ end trace 0000000000000000 ]---
To fix this, check for !dma_mapping_error() before calling
dma_unmap_single() on the "theend_iv" path.