In the Linux kernel, the following vulnerability has been resolved:
iio: common: st_sensors: Fix use of uninitialize device structs
Throughout the various probe functions &indio_dev->dev is used before it
is initialized. This caused a kernel panic in st_sensors_power_enable()
when the call to devm_regulator_bulk_get_enable() fails and then calls
dev_err_probe() with the uninitialized device.
This seems to only cause a panic with dev_err_probe(), dev_err(),
dev_warn() and dev_info() don't seem to cause a panic, but are fixed
as well.
The issue is reported and traced here: [1]
In the Linux kernel, the following vulnerability has been resolved:
drm/gem: Acquire references on GEM handles for framebuffers
A GEM handle can be released while the GEM buffer object is attached
to a DRM framebuffer. This leads to the release of the dma-buf backing
the buffer object, if any. [1] Trying to use the framebuffer in further
mode-setting operations leads to a segmentation fault. Most easily
happens with driver that use shadow planes for vmap-ing the dma-buf
during a page flip. An example is shown below.
[ 156.791968] ------------[ cut here ]------------
[ 156.796830] WARNING: CPU: 2 PID: 2255 at drivers/dma-buf/dma-buf.c:1527 dma_buf_vmap+0x224/0x430
[...]
[ 156.942028] RIP: 0010:dma_buf_vmap+0x224/0x430
[ 157.043420] Call Trace:
[ 157.045898] <TASK>
[ 157.048030] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.052436] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.056836] ? show_trace_log_lvl+0x1af/0x2c0
[ 157.061253] ? drm_gem_shmem_vmap+0x74/0x710
[ 157.065567] ? dma_buf_vmap+0x224/0x430
[ 157.069446] ? __warn.cold+0x58/0xe4
[ 157.073061] ? dma_buf_vmap+0x224/0x430
[ 157.077111] ? report_bug+0x1dd/0x390
[ 157.080842] ? handle_bug+0x5e/0xa0
[ 157.084389] ? exc_invalid_op+0x14/0x50
[ 157.088291] ? asm_exc_invalid_op+0x16/0x20
[ 157.092548] ? dma_buf_vmap+0x224/0x430
[ 157.096663] ? dma_resv_get_singleton+0x6d/0x230
[ 157.101341] ? __pfx_dma_buf_vmap+0x10/0x10
[ 157.105588] ? __pfx_dma_resv_get_singleton+0x10/0x10
[ 157.110697] drm_gem_shmem_vmap+0x74/0x710
[ 157.114866] drm_gem_vmap+0xa9/0x1b0
[ 157.118763] drm_gem_vmap_unlocked+0x46/0xa0
[ 157.123086] drm_gem_fb_vmap+0xab/0x300
[ 157.126979] drm_atomic_helper_prepare_planes.part.0+0x487/0xb10
[ 157.133032] ? lockdep_init_map_type+0x19d/0x880
[ 157.137701] drm_atomic_helper_commit+0x13d/0x2e0
[ 157.142671] ? drm_atomic_nonblocking_commit+0xa0/0x180
[ 157.147988] drm_mode_atomic_ioctl+0x766/0xe40
[...]
[ 157.346424] ---[ end trace 0000000000000000 ]---
Acquiring GEM handles for the framebuffer's GEM buffer objects prevents
this from happening. The framebuffer's cleanup later puts the handle
references.
Commit 1a148af06000 ("drm/gem-shmem: Use dma_buf from GEM object
instance") triggers the segmentation fault easily by using the dma-buf
field more widely. The underlying issue with reference counting has
been present before.
v2:
- acquire the handle instead of the BO (Christian)
- fix comment style (Christian)
- drop the Fixes tag (Christian)
- rename err_ gotos
- add missing Link tag
In the Linux kernel, the following vulnerability has been resolved:
s390/mm: Fix in_atomic() handling in do_secure_storage_access()
Kernel user spaces accesses to not exported pages in atomic context
incorrectly try to resolve the page fault.
With debug options enabled call traces like this can be seen:
BUG: sleeping function called from invalid context at kernel/locking/rwsem.c:1523
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 419074, name: qemu-system-s39
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
INFO: lockdep is turned off.
Preemption disabled at:
[<00000383ea47cfa2>] copy_page_from_iter_atomic+0xa2/0x8a0
CPU: 12 UID: 0 PID: 419074 Comm: qemu-system-s39
Tainted: G W 6.16.0-20250531.rc0.git0.69b3a602feac.63.fc42.s390x+debug #1 PREEMPT
Tainted: [W]=WARN
Hardware name: IBM 3931 A01 703 (LPAR)
Call Trace:
[<00000383e990d282>] dump_stack_lvl+0xa2/0xe8
[<00000383e99bf152>] __might_resched+0x292/0x2d0
[<00000383eaa7c374>] down_read+0x34/0x2d0
[<00000383e99432f8>] do_secure_storage_access+0x108/0x360
[<00000383eaa724b0>] __do_pgm_check+0x130/0x220
[<00000383eaa842e4>] pgm_check_handler+0x114/0x160
[<00000383ea47d028>] copy_page_from_iter_atomic+0x128/0x8a0
([<00000383ea47d016>] copy_page_from_iter_atomic+0x116/0x8a0)
[<00000383e9c45eae>] generic_perform_write+0x16e/0x310
[<00000383e9eb87f4>] ext4_buffered_write_iter+0x84/0x160
[<00000383e9da0de4>] vfs_write+0x1c4/0x460
[<00000383e9da123c>] ksys_write+0x7c/0x100
[<00000383eaa7284e>] __do_syscall+0x15e/0x280
[<00000383eaa8417e>] system_call+0x6e/0x90
INFO: lockdep is turned off.
It is not allowed to take the mmap_lock while in atomic context. Therefore
handle such a secure storage access fault as if the accessed page is not
mapped: the uaccess function will return -EFAULT, and the caller has to
deal with this. Usually this means that the access is retried in process
context, which allows to resolve the page fault (or in this case export the
page).
In the Linux kernel, the following vulnerability has been resolved:
smb: Log an error when close_all_cached_dirs fails
Under low-memory conditions, close_all_cached_dirs() can't move the
dentries to a separate list to dput() them once the locks are dropped.
This will result in a "Dentry still in use" error, so add an error
message that makes it clear this is what happened:
[ 495.281119] CIFS: VFS: \\otters.example.com\share Out of memory while dropping dentries
[ 495.281595] ------------[ cut here ]------------
[ 495.281887] BUG: Dentry ffff888115531138{i=78,n=/} still in use (2) [unmount of cifs cifs]
[ 495.282391] WARNING: CPU: 1 PID: 2329 at fs/dcache.c:1536 umount_check+0xc8/0xf0
Also, bail out of looping through all tcons as soon as a single
allocation fails, since we're already in trouble, and kmalloc() attempts
for subseqeuent tcons are likely to fail just like the first one did.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: exit after state insertion failure at btrfs_convert_extent_bit()
If insert_state() state failed it returns an error pointer and we call
extent_io_tree_panic() which will trigger a BUG() call. However if
CONFIG_BUG is disabled, which is an uncommon and exotic scenario, then
we fallthrough and call cache_state() which will dereference the error
pointer, resulting in an invalid memory access.
So jump to the 'out' label after calling extent_io_tree_panic(), it also
makes the code more clear besides dealing with the exotic scenario where
CONFIG_BUG is disabled.
In the Linux kernel, the following vulnerability has been resolved:
sched/rt: Fix race in push_rt_task
Overview
========
When a CPU chooses to call push_rt_task and picks a task to push to
another CPU's runqueue then it will call find_lock_lowest_rq method
which would take a double lock on both CPUs' runqueues. If one of the
locks aren't readily available, it may lead to dropping the current
runqueue lock and reacquiring both the locks at once. During this window
it is possible that the task is already migrated and is running on some
other CPU. These cases are already handled. However, if the task is
migrated and has already been executed and another CPU is now trying to
wake it up (ttwu) such that it is queued again on the runqeue
(on_rq is 1) and also if the task was run by the same CPU, then the
current checks will pass even though the task was migrated out and is no
longer in the pushable tasks list.
Crashes
=======
This bug resulted in quite a few flavors of crashes triggering kernel
panics with various crash signatures such as assert failures, page
faults, null pointer dereferences, and queue corruption errors all
coming from scheduler itself.
Some of the crashes:
-> kernel BUG at kernel/sched/rt.c:1616! BUG_ON(idx >= MAX_RT_PRIO)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? pick_next_task_rt+0x6e/0x1d0
? do_error_trap+0x64/0xa0
? pick_next_task_rt+0x6e/0x1d0
? exc_invalid_op+0x4c/0x60
? pick_next_task_rt+0x6e/0x1d0
? asm_exc_invalid_op+0x12/0x20
? pick_next_task_rt+0x6e/0x1d0
__schedule+0x5cb/0x790
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: kernel NULL pointer dereference, address: 00000000000000c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? __warn+0x8a/0xe0
? exc_page_fault+0x3d6/0x520
? asm_exc_page_fault+0x1e/0x30
? pick_next_task_rt+0xb5/0x1d0
? pick_next_task_rt+0x8c/0x1d0
__schedule+0x583/0x7e0
? update_ts_time_stats+0x55/0x70
schedule_idle+0x1e/0x40
do_idle+0x15e/0x200
cpu_startup_entry+0x19/0x20
start_secondary+0x117/0x160
secondary_startup_64_no_verify+0xb0/0xbb
-> BUG: unable to handle page fault for address: ffff9464daea5900
kernel BUG at kernel/sched/rt.c:1861! BUG_ON(rq->cpu != task_cpu(p))
-> kernel BUG at kernel/sched/rt.c:1055! BUG_ON(!rq->nr_running)
Call Trace:
? __die_body+0x1a/0x60
? die+0x2a/0x50
? do_trap+0x85/0x100
? dequeue_top_rt_rq+0xa2/0xb0
? do_error_trap+0x64/0xa0
? dequeue_top_rt_rq+0xa2/0xb0
? exc_invalid_op+0x4c/0x60
? dequeue_top_rt_rq+0xa2/0xb0
? asm_exc_invalid_op+0x12/0x20
? dequeue_top_rt_rq+0xa2/0xb0
dequeue_rt_entity+0x1f/0x70
dequeue_task_rt+0x2d/0x70
__schedule+0x1a8/0x7e0
? blk_finish_plug+0x25/0x40
schedule+0x3c/0xb0
futex_wait_queue_me+0xb6/0x120
futex_wait+0xd9/0x240
do_futex+0x344/0xa90
? get_mm_exe_file+0x30/0x60
? audit_exe_compare+0x58/0x70
? audit_filter_rules.constprop.26+0x65e/0x1220
__x64_sys_futex+0x148/0x1f0
do_syscall_64+0x30/0x80
entry_SYSCALL_64_after_hwframe+0x62/0xc7
-> BUG: unable to handle page fault for address: ffff8cf3608bc2c0
Call Trace:
? __die_body+0x1a/0x60
? no_context+0x183/0x350
? spurious_kernel_fault+0x171/0x1c0
? exc_page_fault+0x3b6/0x520
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? asm_exc_page_fault+0x1e/0x30
? _cond_resched+0x15/0x30
? futex_wait_queue_me+0xc8/0x120
? futex_wait+0xd9/0x240
? try_to_wake_up+0x1b8/0x490
? futex_wake+0x78/0x160
? do_futex+0xcd/0xa90
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? plist_del+0x6a/0xd0
? plist_check_list+0x15/0x40
? plist_check_list+0x2e/0x40
? dequeue_pushable_task+0x20/0x70
? __schedule+0x382/0x7e0
? asm_sysvec_reschedule_i
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
NFSD: fix race between nfsd registration and exports_proc
As of now nfsd calls create_proc_exports_entry() at start of init_nfsd
and cleanup by remove_proc_entry() at last of exit_nfsd.
Which causes kernel OOPs if there is race between below 2 operations:
(i) exportfs -r
(ii) mount -t nfsd none /proc/fs/nfsd
for 5.4 kernel ARM64:
CPU 1:
el1_irq+0xbc/0x180
arch_counter_get_cntvct+0x14/0x18
running_clock+0xc/0x18
preempt_count_add+0x88/0x110
prep_new_page+0xb0/0x220
get_page_from_freelist+0x2d8/0x1778
__alloc_pages_nodemask+0x15c/0xef0
__vmalloc_node_range+0x28c/0x478
__vmalloc_node_flags_caller+0x8c/0xb0
kvmalloc_node+0x88/0xe0
nfsd_init_net+0x6c/0x108 [nfsd]
ops_init+0x44/0x170
register_pernet_operations+0x114/0x270
register_pernet_subsys+0x34/0x50
init_nfsd+0xa8/0x718 [nfsd]
do_one_initcall+0x54/0x2e0
CPU 2 :
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
PC is at : exports_net_open+0x50/0x68 [nfsd]
Call trace:
exports_net_open+0x50/0x68 [nfsd]
exports_proc_open+0x2c/0x38 [nfsd]
proc_reg_open+0xb8/0x198
do_dentry_open+0x1c4/0x418
vfs_open+0x38/0x48
path_openat+0x28c/0xf18
do_filp_open+0x70/0xe8
do_sys_open+0x154/0x248
Sometimes it crashes at exports_net_open() and sometimes cache_seq_next_rcu().
and same is happening on latest 6.14 kernel as well:
[ 0.000000] Linux version 6.14.0-rc5-next-20250304-dirty
...
[ 285.455918] Unable to handle kernel paging request at virtual address 00001f4800001f48
...
[ 285.464902] pc : cache_seq_next_rcu+0x78/0xa4
...
[ 285.469695] Call trace:
[ 285.470083] cache_seq_next_rcu+0x78/0xa4 (P)
[ 285.470488] seq_read+0xe0/0x11c
[ 285.470675] proc_reg_read+0x9c/0xf0
[ 285.470874] vfs_read+0xc4/0x2fc
[ 285.471057] ksys_read+0x6c/0xf4
[ 285.471231] __arm64_sys_read+0x1c/0x28
[ 285.471428] invoke_syscall+0x44/0x100
[ 285.471633] el0_svc_common.constprop.0+0x40/0xe0
[ 285.471870] do_el0_svc_compat+0x1c/0x34
[ 285.472073] el0_svc_compat+0x2c/0x80
[ 285.472265] el0t_32_sync_handler+0x90/0x140
[ 285.472473] el0t_32_sync+0x19c/0x1a0
[ 285.472887] Code: f9400885 93407c23 937d7c27 11000421 (f86378a3)
[ 285.473422] ---[ end trace 0000000000000000 ]---
It reproduced simply with below script:
while [ 1 ]
do
/exportfs -r
done &
while [ 1 ]
do
insmod /nfsd.ko
mount -t nfsd none /proc/fs/nfsd
umount /proc/fs/nfsd
rmmod nfsd
done &
So exporting interfaces to user space shall be done at last and
cleanup at first place.
With change there is no Kernel OOPs.
In the Linux kernel, the following vulnerability has been resolved:
smb: client: add NULL check in automount_fullpath
page is checked for null in __build_path_from_dentry_optional_prefix
when tcon->origin_fullpath is not set. However, the check is missing when
it is set.
Add a check to prevent a potential NULL pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Disable SCO support if READ_VOICE_SETTING is unsupported/broken
A SCO connection without the proper voice_setting can cause
the controller to lock up.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: don't warn when if there is a FW error
iwl_trans_reclaim is warning if it is called when the FW is not alive.
But if it is called when there is a pending restart, i.e. after a FW
error, there is no need to warn, instead - return silently.