Mbed TLS before 3.6.4 allows a use-after-free in certain situations of applications that are developed in accordance with the documentation. The function mbedtls_x509_string_to_names() takes a head argument that is documented as an output argument. The documentation does not suggest that the function will free that pointer; however, the function does call mbedtls_asn1_free_named_data_list() on that argument, which performs a deep free(). As a result, application code that uses this function (relying only on documented behavior) is likely to still hold pointers to the memory blocks that were freed, resulting in a high risk of use-after-free or double-free. In particular, the two sample programs x509/cert_write and x509/cert_req are affected (use-after-free if the san string contains more than one DN).
Mbed TLS before 3.6.4 has a NULL pointer dereference because mbedtls_asn1_store_named_data can trigger conflicting data with val.p of NULL but val.len greater than zero.
Mbed TLS before 3.6.4 has a race condition in AESNI detection if certain compiler optimizations occur. An attacker may be able to extract an AES key from a multithreaded program, or perform a GCM forgery.
Mbed TLS before 3.6.4 has a PEM parsing one-byte heap-based buffer underflow, in mbedtls_pem_read_buffer and two mbedtls_pk_parse functions, via untrusted PEM input.
Mbed TLS before 2.28.10 and 3.x before 3.6.3, on the client side, accepts servers that have trusted certificates for arbitrary hostnames unless the TLS client application calls mbedtls_ssl_set_hostname.
Mbed TLS before 2.28.10 and 3.x before 3.6.3, in some cases of failed memory allocation or hardware errors, uses uninitialized stack memory to compose the TLS Finished message, potentially leading to authentication bypasses such as replays.
An issue was discovered in Mbed TLS 2.18.0 through 2.28.x before 2.28.8 and 3.x before 3.6.0, and Mbed Crypto. The PSA Crypto API mishandles shared memory.
An issue was discovered in Mbed TLS 2.x before 2.28.7 and 3.x before 3.5.2. There was a timing side channel in RSA private operations. This side channel could be sufficient for a local attacker to recover the plaintext. It requires the attacker to send a large number of messages for decryption, as described in "Everlasting ROBOT: the Marvin Attack" by Hubert Kario.