WebAssembly Micro Runtime (WAMR) is a lightweight standalone WebAssembly (Wasm) runtime. Prior to version 2.4.4, WAMR is susceptible to a segmentation fault in v128.store instruction. This issue has been patched in version 2.4.4.
WebAssembly Micro Runtime (WAMR) is a lightweight standalone WebAssembly (Wasm) runtime. Prior to version 2.4.4, an out-of-bounds array access issue exists in WAMR's fast interpreter mode during WASM bytecode loading. When frame_ref_bottom and frame_offset_bottom arrays are at capacity and a GET_GLOBAL(I32) opcode is encountered, frame_ref_bottom is expanded but frame_offset_bottom may not be. If this is immediately followed by an if opcode that triggers preserve_local_for_block, the function traverses arrays using stack_cell_num as the upper bound, causing out-of-bounds access to frame_offset_bottom since it wasn't expanded to match the increased stack_cell_num. This issue has been patched in version 2.4.4.
Wasmtime is a runtime for WebAssembly. In versions from 38.0.0 to before 38.0.3, the implementation of component-model related host-to-wasm trampolines in Wasmtime contained a bug where it's possible to carefully craft a component, which when called in a specific way, would crash the host with a segfault or assert failure. Wasmtime 38.0.3 has been released and is patched to fix this issue. There are no workarounds.
Wasmtime is a runtime for WebAssembly. Wasmtime 37.0.0 and 37.0.1 have memory leaks in the C/C++ API when using bindings for the `anyref` or `externref` WebAssembly values. This is caused by a regression introduced during the development of 37.0.0 and all prior versions of Wasmtime are unaffected. If `anyref` or `externref` is not used in the C/C++ API then embeddings are also unaffected by the leaky behavior. The `wasmtime` Rust crate is unaffected by this leak.
Development of Wasmtime 37.0.0 included a refactoring in Rust of changing the old `ManuallyRooted<T>` type to a new `OwnedRooted<T>` type. This change was integrated into Wasmtime's C API but left the C API in a state which had memory leaks. Additionally the new ownership semantics around this type were not reflected into the C++ API, making it leak-prone. A short version of the change is that previously `ManuallyRooted<T>`, as the name implies, required manual calls to an "unroot" operation. If this was forgotten then the memory was still cleaned up when the `wasmtime_store_t` itself was destroyed eventually. Documentation of when to "unroot" was sparse and there were already situations prior to 37.0.0 where memory would be leaked until the store was destroyed anyway. All memory, though, was always bound by the store, and destroying the store would guarantee that there were no memory leaks.
In migrating to `OwnedRooted<T>` the usage of the type in Rust changed. A manual "unroot" operation is no longer required and it happens naturally as a destructor of the `OwnedRooted<T>` type in Rust itself. These new resource ownership semantics were not fully integrated into the preexisting semantics of the C/C++ APIs in Wasmtime. A crucial distinction of `OwnedRooted<T>` vs `ManuallyRooted<T>` is that the `OwnedRooted<T>` type allocates host memory outside of the store. This means that if an `OwnedRooted<T>` is leaked then destroying a store does not release this memory and it's a permanent memory leak on the host.
This led to a few distinct, but related, issues arising: A typo in the `wasmtime_val_unroot` function in the C API meant that it did not actually unroot anything. This meant that even if embedders faithfully call the function then memory will be leaked. If a host-defined function returned a `wasmtime_{externref,anyref}_t` value then the value was never unrooted. The C/C++ API no longer has access to the value and the Rust implementation did not unroot. This meant that any values returned this way were never unrooted. The goal of the C++ API of Wasmtime is to encode automatic memory management in the type system, but the C++ API was not updated when `OwnedRooted<T>` was added. This meant that idiomatic usage of the C++ API would leak memory due to a lack of destructors on values.
These issues have all been fixed in a 37.0.2 release of Wasmtime. The implementation of the C and C++ APIs have been updated accordingly and respectively to account for the changes of ownership here. For example `wasmtime_val_unroot` has been fixed to unroot, the Rust-side implementation of calling an embedder-defined function will unroot return values, and the C++ API now has destructors on the `ExternRef`, `AnyRef`, and `Val` types. These changes have been made to the 37.0.x release branch in a non-API-breaking fashion. Changes to the 38.0.0 release branch (and `main` in the Wasmtime repository) include minor API updates to better accommodate the API semantic changes. The only known workaround at this time is to avoid using `externref` and `anyref` in the C/C++ API of Wasmtime. If avoiding those types is not possible then it's required for users to update to mitigate the leak issue.
WebAssembly Micro Runtime (WAMR) is a lightweight standalone WebAssembly (Wasm) runtime. In WAMR versions prior to 2.4.2, when running in LLVM-JIT mode, the runtime cannot exit normally when executing WebAssembly programs containing a memory.fill instruction where the first operand (memory address pointer) is greater than or equal to 2147483648 bytes (2GiB). This causes the runtime to hang in release builds or crash in debug builds due to accessing an invalid pointer. The issue does not occur in FAST-JIT mode or other runtime tools. This has been fixed in version 2.4.2.
The WebAssembly Micro Runtime's (WAMR) iwasm package is the executable binary built with WAMR VMcore which supports WebAssembly System Interface (WASI) and command line interface. In versions 2.4.0 and below, iwasm uses --addr-pool with an IPv4 address that lacks a subnet mask, allowing the system to accept all IP addresses. This can unintentionally expose the service to all incoming connections and bypass intended access restrictions. Services relying on --addr-pool for restricting access by IP may unintentionally become open to all external connections. This may lead to unauthorized access in production deployments, especially when users assume that specifying an IP without a subnet mask implies a default secure configuration. This is fixed in version 2.4.1.
Wasmtime is a runtime for WebAssembly. Prior to versions 24.0.4, 33.0.2, and 34.0.2, a bug in Wasmtime's implementation of the WASIp1 set of import functions can lead to a WebAssembly guest inducing a panic in the host (embedder). The specific bug is triggered by calling `path_open` after calling `fd_renumber` with either two equal argument values or a second argument being equal to a previously-closed file descriptor number value. The corrupt state introduced in `fd_renumber` will lead to the subsequent opening of a file descriptor to panic. This panic cannot introduce memory unsafety or allow WebAssembly to break outside of its sandbox, however. There is no possible heap corruption or memory unsafety from this panic. This bug is in the implementation of Wasmtime's `wasmtime-wasi` crate which provides an implementation of WASIp1. The bug requires a specially crafted call to `fd_renumber` in addition to the ability to open a subsequent file descriptor. Opening a second file descriptor is only possible when a preopened directory was provided to the guest, and this is common amongst embeddings. A panic in the host is considered a denial-of-service vector for WebAssembly embedders and is thus a security issue in Wasmtime. This bug does not affect WASIp2 and embedders using components. In accordance with Wasmtime's release process, patch releases are available as 24.0.4, 33.0.2, and 34.0.2. Users of other release of Wasmtime are recommended to move to a supported release of Wasmtime. Embedders who are using components or are not providing guest access to create more file descriptors (e.g. via a preopened filesystem directory) are not affected by this issue. Otherwise, there is no workaround at this time, and affected embeddings are recommended to update to a patched version which will not cause a panic in the host.
The WebAssembly Micro Runtime's (WAMR) iwasm package is the executable binary built with WAMR VMcore which supports WebAssembly System Interface (WASI) and command line interface. Anyone running WAMR up to and including version 2.2.0 or WAMR built with libc-uvwasi on Windows is affected by a symlink following vulnerability. On WAMR running in Windows, creating a symlink pointing outside of the preopened directory and subsequently opening it with create flag will create a file on host outside of the sandbox. If the symlink points to an existing host file, it's also possible to open it and read its content. Version 2.3.0 fixes the issue.
An issue in bytecodealliance wasm-micro-runtime before v.b3f728c and fixed in commit 06df58f allows a remote attacker to escalate privileges via a crafted file to the check_was_abi_compatibility function.