In mlflow/mlflow version 2.18, an admin is able to create a new user account without setting a password. This vulnerability could lead to security risks, as accounts without passwords may be susceptible to unauthorized access. Additionally, this issue violates best practices for secure user account management. The issue is fixed in version 2.19.0.
In mlflow/mlflow version 2.17.2, the `/graphql` endpoint is vulnerable to a denial of service attack. An attacker can create large batches of queries that repeatedly request all runs from a given experiment. This can tie up all the workers allocated by MLFlow, rendering the application unable to respond to other requests. This vulnerability is due to uncontrolled resource consumption.
In mlflow/mlflow version v2.13.2, a vulnerability exists that allows the creation or renaming of an experiment with a large number of integers in its name due to the lack of a limit on the experiment name. This can cause the MLflow UI panel to become unresponsive, leading to a potential denial of service. Additionally, there is no character limit in the `artifact_location` parameter while creating the experiment.
Excessive directory permissions in MLflow leads to local privilege escalation when using spark_udf. This behavior can be exploited by a local attacker to gain elevated permissions by using a ToCToU attack. The issue is only relevant when the spark_udf() MLflow API is called.
A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts.
A Local File Inclusion (LFI) vulnerability was identified in mlflow/mlflow, specifically in version 2.9.2, which was fixed in version 2.11.3. This vulnerability arises from the application's failure to properly validate URI fragments for directory traversal sequences such as '../'. An attacker can exploit this flaw by manipulating the fragment part of the URI to read arbitrary files on the local file system, including sensitive files like '/etc/passwd'. The vulnerability is a bypass to a previous patch that only addressed similar manipulation within the URI's query string, highlighting the need for comprehensive validation of all parts of a URI to prevent LFI attacks.
A vulnerability in mlflow/mlflow version 8.2.1 allows for remote code execution due to improper neutralization of special elements used in an OS command ('Command Injection') within the `mlflow.data.http_dataset_source.py` module. Specifically, when loading a dataset from a source URL with an HTTP scheme, the filename extracted from the `Content-Disposition` header or the URL path is used to generate the final file path without proper sanitization. This flaw enables an attacker to control the file path fully by utilizing path traversal or absolute path techniques, such as '../../tmp/poc.txt' or '/tmp/poc.txt', leading to arbitrary file write. Exploiting this vulnerability could allow a malicious user to execute commands on the vulnerable machine, potentially gaining access to data and model information. The issue is fixed in version 2.9.0.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 2.5.0 or newer, enabling a maliciously uploaded Langchain AgentExecutor model to run arbitrary code on an end user’s system when interacted with.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 0.5.0 or newer, enabling a maliciously uploaded PyTorch model to run arbitrary code on an end user’s system when interacted with.
Deserialization of untrusted data can occur in versions of the MLflow platform running version 1.27.0 or newer, enabling a maliciously crafted Recipe to execute arbitrary code on an end user’s system when run.