Vulnerability in the MySQL Connectors product of Oracle MySQL (component: Connector/J). Supported versions that are affected are 8.0.32 and prior. Difficult to exploit vulnerability allows high privileged attacker with network access via multiple protocols to compromise MySQL Connectors. Successful attacks require human interaction from a person other than the attacker. Successful attacks of this vulnerability can result in unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of MySQL Connectors as well as unauthorized update, insert or delete access to some of MySQL Connectors accessible data and unauthorized read access to a subset of MySQL Connectors accessible data. CVSS 3.1 Base Score 5.3 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:H/UI:R/S:U/C:L/I:L/A:H).
Vulnerability in the Oracle Communications BRM - Elastic Charging Engine product of Oracle Communications Applications (component: Customer, Config, Pricing Manager). Supported versions that are affected are 12.0.0.3.0-12.0.0.7.0. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle Communications BRM - Elastic Charging Engine executes to compromise Oracle Communications BRM - Elastic Charging Engine. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Communications BRM - Elastic Charging Engine accessible data. CVSS 3.1 Base Score 4.4 (Confidentiality impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:N/A:N).
In Spring Cloud Function versions 3.1.6, 3.2.2 and older unsupported versions, when using routing functionality it is possible for a user to provide a specially crafted SpEL as a routing-expression that may result in remote code execution and access to local resources.
A Spring MVC or Spring WebFlux application running on JDK 9+ may be vulnerable to remote code execution (RCE) via data binding. The specific exploit requires the application to run on Tomcat as a WAR deployment. If the application is deployed as a Spring Boot executable jar, i.e. the default, it is not vulnerable to the exploit. However, the nature of the vulnerability is more general, and there may be other ways to exploit it.
A use-after-free read flaw was found in sock_getsockopt() in net/core/sock.c due to SO_PEERCRED and SO_PEERGROUPS race with listen() (and connect()) in the Linux kernel. In this flaw, an attacker with a user privileges may crash the system or leak internal kernel information.
A flaw was found in the sctp_make_strreset_req function in net/sctp/sm_make_chunk.c in the SCTP network protocol in the Linux kernel with a local user privilege access. In this flaw, an attempt to use more buffer than is allocated triggers a BUG_ON issue, leading to a denial of service (DOS).
Non-transparent sharing of branch predictor selectors between contexts in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.
Non-transparent sharing of branch predictor within a context in some Intel(R) Processors may allow an authorized user to potentially enable information disclosure via local access.
A flaw was found in python. An improperly handled HTTP response in the HTTP client code of python may allow a remote attacker, who controls the HTTP server, to make the client script enter an infinite loop, consuming CPU time. The highest threat from this vulnerability is to system availability.
An out-of-bounds (OOB) memory read flaw was found in the Qualcomm IPC router protocol in the Linux kernel. A missing sanity check allows a local attacker to gain access to out-of-bounds memory, leading to a system crash or a leak of internal kernel information. The highest threat from this vulnerability is to system availability.