Security Vulnerabilities
- CVEs Published In December 2024
In the linux kernel, if IMA appraisal is used with the "ima_appraise=log" boot param, lockdown can be defeated with kexec on any machine when Secure Boot is disabled or unavailable. IMA prevents setting "ima_appraise=log" from the boot param when Secure Boot is enabled, but this does not cover cases where lockdown is used without Secure Boot. CVSS 3.1 Base Score 6.7 (Confidentiality, Integrity, Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H).
Vulnerability in the Oracle iStore product of Oracle E-Business Suite (component: Shopping Cart). Supported versions that are affected are 12.1.1, 12.1.2, 12.1.3, 12.2.3, 12.2.4, 12.2.5, 12.2.6, 12.2.7 and 12.2.8. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle iStore. Successful attacks require human interaction from a person other than the attacker and while the vulnerability is in Oracle iStore, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle iStore accessible data as well as unauthorized update, insert or delete access to some of Oracle iStore accessible data. CVSS 3.0 Base Score 8.2 (Confidentiality and Integrity impacts). CVSS Vector: (CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:L/A:N).
In the Linux kernel, the following vulnerability has been resolved:
EDAC/bluefield: Fix potential integer overflow
The 64-bit argument for the "get DIMM info" SMC call consists of mem_ctrl_idx
left-shifted 16 bits and OR-ed with DIMM index. With mem_ctrl_idx defined as
32-bits wide the left-shift operation truncates the upper 16 bits of
information during the calculation of the SMC argument.
The mem_ctrl_idx stack variable must be defined as 64-bits wide to prevent any
potential integer overflow, i.e. loss of data from upper 16 bits.
In the Linux kernel, the following vulnerability has been resolved:
crypto: qat/qat_4xxx - fix off by one in uof_get_name()
The fw_objs[] array has "num_objs" elements so the > needs to be >= to
prevent an out of bounds read.
In the Linux kernel, the following vulnerability has been resolved:
crypto: qat/qat_420xx - fix off by one in uof_get_name()
This is called from uof_get_name_420xx() where "num_objs" is the
ARRAY_SIZE() of fw_objs[]. The > needs to be >= to prevent an out of
bounds access.
In the Linux kernel, the following vulnerability has been resolved:
usb: typec: ucsi: glink: fix off-by-one in connector_status
UCSI connector's indices start from 1 up to 3, PMIC_GLINK_MAX_PORTS.
Correct the condition in the pmic_glink_ucsi_connector_status()
callback, fixing Type-C orientation reporting for the third USB-C
connector.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix out of bounds reads when finding clock sources
The current USB-audio driver code doesn't check bLength of each
descriptor at traversing for clock descriptors. That is, when a
device provides a bogus descriptor with a shorter bLength, the driver
might hit out-of-bounds reads.
For addressing it, this patch adds sanity checks to the validator
functions for the clock descriptor traversal. When the descriptor
length is shorter than expected, it's skipped in the loop.
For the clock source and clock multiplier descriptors, we can just
check bLength against the sizeof() of each descriptor type.
OTOH, the clock selector descriptor of UAC2 and UAC3 has an array
of bNrInPins elements and two more fields at its tail, hence those
have to be checked in addition to the sizeof() check.
In the Linux kernel, the following vulnerability has been resolved:
svcrdma: Address an integer overflow
Dan Carpenter reports:
> Commit 78147ca8b4a9 ("svcrdma: Add a "parsed chunk list" data
> structure") from Jun 22, 2020 (linux-next), leads to the following
> Smatch static checker warning:
>
> net/sunrpc/xprtrdma/svc_rdma_recvfrom.c:498 xdr_check_write_chunk()
> warn: potential user controlled sizeof overflow 'segcount * 4 * 4'
>
> net/sunrpc/xprtrdma/svc_rdma_recvfrom.c
> 488 static bool xdr_check_write_chunk(struct svc_rdma_recv_ctxt *rctxt)
> 489 {
> 490 u32 segcount;
> 491 __be32 *p;
> 492
> 493 if (xdr_stream_decode_u32(&rctxt->rc_stream, &segcount))
> ^^^^^^^^
>
> 494 return false;
> 495
> 496 /* A bogus segcount causes this buffer overflow check to fail. */
> 497 p = xdr_inline_decode(&rctxt->rc_stream,
> --> 498 segcount * rpcrdma_segment_maxsz * sizeof(*p));
>
>
> segcount is an untrusted u32. On 32bit systems anything >= SIZE_MAX / 16 will
> have an integer overflow and some those values will be accepted by
> xdr_inline_decode().
In the Linux kernel, the following vulnerability has been resolved:
clk: clk-apple-nco: Add NULL check in applnco_probe
Add NULL check in applnco_probe, to handle kernel NULL pointer
dereference error.
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix uninitialized value in ocfs2_file_read_iter()
Syzbot has reported the following KMSAN splat:
BUG: KMSAN: uninit-value in ocfs2_file_read_iter+0x9a4/0xf80
ocfs2_file_read_iter+0x9a4/0xf80
__io_read+0x8d4/0x20f0
io_read+0x3e/0xf0
io_issue_sqe+0x42b/0x22c0
io_wq_submit_work+0xaf9/0xdc0
io_worker_handle_work+0xd13/0x2110
io_wq_worker+0x447/0x1410
ret_from_fork+0x6f/0x90
ret_from_fork_asm+0x1a/0x30
Uninit was created at:
__alloc_pages_noprof+0x9a7/0xe00
alloc_pages_mpol_noprof+0x299/0x990
alloc_pages_noprof+0x1bf/0x1e0
allocate_slab+0x33a/0x1250
___slab_alloc+0x12ef/0x35e0
kmem_cache_alloc_bulk_noprof+0x486/0x1330
__io_alloc_req_refill+0x84/0x560
io_submit_sqes+0x172f/0x2f30
__se_sys_io_uring_enter+0x406/0x41c0
__x64_sys_io_uring_enter+0x11f/0x1a0
x64_sys_call+0x2b54/0x3ba0
do_syscall_64+0xcd/0x1e0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Since an instance of 'struct kiocb' may be passed from the block layer
with 'private' field uninitialized, introduce 'ocfs2_iocb_init_rw_locked()'
and use it from where 'ocfs2_dio_end_io()' might take care, i.e. in
'ocfs2_file_read_iter()' and 'ocfs2_file_write_iter()'.