Security Vulnerabilities
- CVEs Published In December 2024
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: Don't retire aborted MMIO instruction
Returning an abort to the guest for an unsupported MMIO access is a
documented feature of the KVM UAPI. Nevertheless, it's clear that this
plumbing has seen limited testing, since userspace can trivially cause a
WARN in the MMIO return:
WARNING: CPU: 0 PID: 30558 at arch/arm64/include/asm/kvm_emulate.h:536 kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536
Call trace:
kvm_handle_mmio_return+0x46c/0x5c4 arch/arm64/include/asm/kvm_emulate.h:536
kvm_arch_vcpu_ioctl_run+0x98/0x15b4 arch/arm64/kvm/arm.c:1133
kvm_vcpu_ioctl+0x75c/0xa78 virt/kvm/kvm_main.c:4487
__do_sys_ioctl fs/ioctl.c:51 [inline]
__se_sys_ioctl fs/ioctl.c:893 [inline]
__arm64_sys_ioctl+0x14c/0x1c8 fs/ioctl.c:893
__invoke_syscall arch/arm64/kernel/syscall.c:35 [inline]
invoke_syscall+0x98/0x2b8 arch/arm64/kernel/syscall.c:49
el0_svc_common+0x1e0/0x23c arch/arm64/kernel/syscall.c:132
do_el0_svc+0x48/0x58 arch/arm64/kernel/syscall.c:151
el0_svc+0x38/0x68 arch/arm64/kernel/entry-common.c:712
el0t_64_sync_handler+0x90/0xfc arch/arm64/kernel/entry-common.c:730
el0t_64_sync+0x190/0x194 arch/arm64/kernel/entry.S:598
The splat is complaining that KVM is advancing PC while an exception is
pending, i.e. that KVM is retiring the MMIO instruction despite a
pending synchronous external abort. Womp womp.
Fix the glaring UAPI bug by skipping over all the MMIO emulation in
case there is a pending synchronous exception. Note that while userspace
is capable of pending an asynchronous exception (SError, IRQ, or FIQ),
it is still safe to retire the MMIO instruction in this case as (1) they
are by definition asynchronous, and (2) KVM relies on hardware support
for pending/delivering these exceptions instead of the software state
machine for advancing PC.
In the Linux kernel, the following vulnerability has been resolved:
ALSA: usb-audio: Fix potential out-of-bound accesses for Extigy and Mbox devices
A bogus device can provide a bNumConfigurations value that exceeds the
initial value used in usb_get_configuration for allocating dev->config.
This can lead to out-of-bounds accesses later, e.g. in
usb_destroy_configuration.
In the Linux kernel, the following vulnerability has been resolved:
xen: Fix the issue of resource not being properly released in xenbus_dev_probe()
This patch fixes an issue in the function xenbus_dev_probe(). In the
xenbus_dev_probe() function, within the if (err) branch at line 313, the
program incorrectly returns err directly without releasing the resources
allocated by err = drv->probe(dev, id). As the return value is non-zero,
the upper layers assume the processing logic has failed. However, the probe
operation was performed earlier without a corresponding remove operation.
Since the probe actually allocates resources, failing to perform the remove
operation could lead to problems.
To fix this issue, we followed the resource release logic of the
xenbus_dev_remove() function by adding a new block fail_remove before the
fail_put block. After entering the branch if (err) at line 313, the
function will use a goto statement to jump to the fail_remove block,
ensuring that the previously acquired resources are correctly released,
thus preventing the reference count leak.
This bug was identified by an experimental static analysis tool developed
by our team. The tool specializes in analyzing reference count operations
and detecting potential issues where resources are not properly managed.
In this case, the tool flagged the missing release operation as a
potential problem, which led to the development of this patch.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: imx-audmix: Add NULL check in imx_audmix_probe
devm_kasprintf() can return a NULL pointer on failure,but this
returned value in imx_audmix_probe() is not checked.
Add NULL check in imx_audmix_probe(), to handle kernel NULL
pointer dereference error.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in hwss_setup_dpp
This commit addresses a null pointer dereference issue in
hwss_setup_dpp(). The issue could occur when pipe_ctx->plane_state is
null. The fix adds a check to ensure `pipe_ctx->plane_state` is not null
before accessing. This prevents a null pointer dereference.
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix null check for pipe_ctx->plane_state in dcn20_program_pipe
This commit addresses a null pointer dereference issue in
dcn20_program_pipe(). Previously, commit 8e4ed3cf1642 ("drm/amd/display:
Add null check for pipe_ctx->plane_state in dcn20_program_pipe")
partially fixed the null pointer dereference issue. However, in
dcn20_update_dchubp_dpp(), the variable pipe_ctx is passed in, and
plane_state is accessed again through pipe_ctx. Multiple if statements
directly call attributes of plane_state, leading to potential null
pointer dereference issues. This patch adds necessary null checks to
ensure stability.
In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Fix possible resource leak in fw_log_firmware_info()
The alg instance should be released under the exception path, otherwise
there may be resource leak here.
To mitigate this, free the alg instance with crypto_free_shash when kmalloc
fails.
In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix use-after-free in SMB request handling
A race condition exists between SMB request handling in
`ksmbd_conn_handler_loop()` and the freeing of `ksmbd_conn` in the
workqueue handler `handle_ksmbd_work()`. This leads to a UAF.
- KASAN: slab-use-after-free Read in handle_ksmbd_work
- KASAN: slab-use-after-free in rtlock_slowlock_locked
This race condition arises as follows:
- `ksmbd_conn_handler_loop()` waits for `conn->r_count` to reach zero:
`wait_event(conn->r_count_q, atomic_read(&conn->r_count) == 0);`
- Meanwhile, `handle_ksmbd_work()` decrements `conn->r_count` using
`atomic_dec_return(&conn->r_count)`, and if it reaches zero, calls
`ksmbd_conn_free()`, which frees `conn`.
- However, after `handle_ksmbd_work()` decrements `conn->r_count`,
it may still access `conn->r_count_q` in the following line:
`waitqueue_active(&conn->r_count_q)` or `wake_up(&conn->r_count_q)`
This results in a UAF, as `conn` has already been freed.
The discovery of this UAF can be referenced in the following PR for
syzkaller's support for SMB requests.
In the Linux kernel, the following vulnerability has been resolved:
io_uring: check for overflows in io_pin_pages
WARNING: CPU: 0 PID: 5834 at io_uring/memmap.c:144 io_pin_pages+0x149/0x180 io_uring/memmap.c:144
CPU: 0 UID: 0 PID: 5834 Comm: syz-executor825 Not tainted 6.12.0-next-20241118-syzkaller #0
Call Trace:
<TASK>
__io_uaddr_map+0xfb/0x2d0 io_uring/memmap.c:183
io_rings_map io_uring/io_uring.c:2611 [inline]
io_allocate_scq_urings+0x1c0/0x650 io_uring/io_uring.c:3470
io_uring_create+0x5b5/0xc00 io_uring/io_uring.c:3692
io_uring_setup io_uring/io_uring.c:3781 [inline]
...
</TASK>
io_pin_pages()'s uaddr parameter came directly from the user and can be
garbage. Don't just add size to it as it can overflow.
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: fix crash when unbinding
If there is an error during some initialization related to firmware,
the function ath12k_dp_cc_cleanup is called to release resources.
However this is released again when the device is unbinded (ath12k_pci),
and we get:
BUG: kernel NULL pointer dereference, address: 0000000000000020
at RIP: 0010:ath12k_dp_cc_cleanup.part.0+0xb6/0x500 [ath12k]
Call Trace:
ath12k_dp_cc_cleanup
ath12k_dp_free
ath12k_core_deinit
ath12k_pci_remove
...
The issue is always reproducible from a VM because the MSI addressing
initialization is failing.
In order to fix the issue, just set to NULL the released structure in
ath12k_dp_cc_cleanup at the end.