Vulnerabilities
Vulnerable Software
Security Vulnerabilities - CVEs Published In December 2024
In the Linux kernel, the following vulnerability has been resolved: cacheinfo: Allocate memory during CPU hotplug if not done from the primary CPU Commit 5944ce092b97 ("arch_topology: Build cacheinfo from primary CPU") adds functionality that architectures can use to optionally allocate and build cacheinfo early during boot. Commit 6539cffa9495 ("cacheinfo: Add arch specific early level initializer") lets secondary CPUs correct (and reallocate memory) cacheinfo data if needed. If the early build functionality is not used and cacheinfo does not need correction, memory for cacheinfo is never allocated. x86 does not use the early build functionality. Consequently, during the cacheinfo CPU hotplug callback, last_level_cache_is_valid() attempts to dereference a NULL pointer: BUG: kernel NULL pointer dereference, address: 0000000000000100 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not present page PGD 0 P4D 0 Oops: 0000 [#1] PREEPMT SMP NOPTI CPU: 0 PID 19 Comm: cpuhp/0 Not tainted 6.4.0-rc2 #1 RIP: 0010: last_level_cache_is_valid+0x95/0xe0a Allocate memory for cacheinfo during the cacheinfo CPU hotplug callback if not done earlier. Moreover, before determining the validity of the last-level cache info, ensure that it has been allocated. Simply checking for non-zero cache_leaves() is not sufficient, as some architectures (e.g., Intel processors) have non-zero cache_leaves() before allocation. Dereferencing NULL cacheinfo can occur in update_per_cpu_data_slice_size(). This function iterates over all online CPUs. However, a CPU may have come online recently, but its cacheinfo may not have been allocated yet. While here, remove an unnecessary indentation in allocate_cache_info(). [ bp: Massage. ]
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx: gpcv2: Adjust delay after power up handshake The udelay(5) is not enough, sometimes below kernel panic still be triggered: [ 4.012973] Kernel panic - not syncing: Asynchronous SError Interrupt [ 4.012976] CPU: 2 UID: 0 PID: 186 Comm: (udev-worker) Not tainted 6.12.0-rc2-0.0.0-devel-00004-g8b1b79e88956 #1 [ 4.012982] Hardware name: Toradex Verdin iMX8M Plus WB on Dahlia Board (DT) [ 4.012985] Call trace: [...] [ 4.013029] arm64_serror_panic+0x64/0x70 [ 4.013034] do_serror+0x3c/0x70 [ 4.013039] el1h_64_error_handler+0x30/0x54 [ 4.013046] el1h_64_error+0x64/0x68 [ 4.013050] clk_imx8mp_audiomix_runtime_resume+0x38/0x48 [ 4.013059] __genpd_runtime_resume+0x30/0x80 [ 4.013066] genpd_runtime_resume+0x114/0x29c [ 4.013073] __rpm_callback+0x48/0x1e0 [ 4.013079] rpm_callback+0x68/0x80 [ 4.013084] rpm_resume+0x3bc/0x6a0 [ 4.013089] __pm_runtime_resume+0x50/0x9c [ 4.013095] pm_runtime_get_suppliers+0x60/0x8c [ 4.013101] __driver_probe_device+0x4c/0x14c [ 4.013108] driver_probe_device+0x3c/0x120 [ 4.013114] __driver_attach+0xc4/0x200 [ 4.013119] bus_for_each_dev+0x7c/0xe0 [ 4.013125] driver_attach+0x24/0x30 [ 4.013130] bus_add_driver+0x110/0x240 [ 4.013135] driver_register+0x68/0x124 [ 4.013142] __platform_driver_register+0x24/0x30 [ 4.013149] sdma_driver_init+0x20/0x1000 [imx_sdma] [ 4.013163] do_one_initcall+0x60/0x1e0 [ 4.013168] do_init_module+0x5c/0x21c [ 4.013175] load_module+0x1a98/0x205c [ 4.013181] init_module_from_file+0x88/0xd4 [ 4.013187] __arm64_sys_finit_module+0x258/0x350 [ 4.013194] invoke_syscall.constprop.0+0x50/0xe0 [ 4.013202] do_el0_svc+0xa8/0xe0 [ 4.013208] el0_svc+0x3c/0x140 [ 4.013215] el0t_64_sync_handler+0x120/0x12c [ 4.013222] el0t_64_sync+0x190/0x194 [ 4.013228] SMP: stopping secondary CPUs The correct way is to wait handshake, but it needs BUS clock of BLK-CTL be enabled, which is in separate driver. So delay is the only option here. The udelay(10) is a data got by experiment.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: nilfs2: fix potential out-of-bounds memory access in nilfs_find_entry() Syzbot reported that when searching for records in a directory where the inode's i_size is corrupted and has a large value, memory access outside the folio/page range may occur, or a use-after-free bug may be detected if KASAN is enabled. This is because nilfs_last_byte(), which is called by nilfs_find_entry() and others to calculate the number of valid bytes of directory data in a page from i_size and the page index, loses the upper 32 bits of the 64-bit size information due to an inappropriate type of local variable to which the i_size value is assigned. This caused a large byte offset value due to underflow in the end address calculation in the calling nilfs_find_entry(), resulting in memory access that exceeds the folio/page size. Fix this issue by changing the type of the local variable causing the bit loss from "unsigned int" to "u64". The return value of nilfs_last_byte() is also of type "unsigned int", but it is truncated so as not to exceed PAGE_SIZE and no bit loss occurs, so no change is required.
CVSS Score
7.8
EPSS Score
0.001
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: qcom: Only free platform MSIs when ESI is enabled Otherwise, it will result in a NULL pointer dereference as below: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 Call trace: mutex_lock+0xc/0x54 platform_device_msi_free_irqs_all+0x14/0x20 ufs_qcom_remove+0x34/0x48 [ufs_qcom] platform_remove+0x28/0x44 device_remove+0x4c/0x80 device_release_driver_internal+0xd8/0x178 driver_detach+0x50/0x9c bus_remove_driver+0x6c/0xbc driver_unregister+0x30/0x60 platform_driver_unregister+0x14/0x20 ufs_qcom_pltform_exit+0x18/0xb94 [ufs_qcom] __arm64_sys_delete_module+0x180/0x260 invoke_syscall+0x44/0x100 el0_svc_common.constprop.0+0xc0/0xe0 do_el0_svc+0x1c/0x28 el0_svc+0x34/0xdc el0t_64_sync_handler+0xc0/0xc4 el0t_64_sync+0x190/0x194
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: Cancel RTC work during ufshcd_remove() Currently, RTC work is only cancelled during __ufshcd_wl_suspend(). When ufshcd is removed in ufshcd_remove(), RTC work is not cancelled. Due to this, any further trigger of the RTC work after ufshcd_remove() would result in a NULL pointer dereference as below: Unable to handle kernel NULL pointer dereference at virtual address 00000000000002a4 Workqueue: events ufshcd_rtc_work Call trace: _raw_spin_lock_irqsave+0x34/0x8c pm_runtime_get_if_active+0x24/0xb4 ufshcd_rtc_work+0x124/0x19c process_scheduled_works+0x18c/0x2d8 worker_thread+0x144/0x280 kthread+0x11c/0x128 ret_from_fork+0x10/0x20 Since RTC work accesses the ufshcd internal structures, it should be cancelled when ufshcd is removed. So do that in ufshcd_remove(), as per the order in ufshcd_init().
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: scsi: ufs: core: sysfs: Prevent div by zero Prevent a division by 0 when monitoring is not enabled.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix use after free on unload System crash is observed with stack trace warning of use after free. There are 2 signals to tell dpc_thread to terminate (UNLOADING flag and kthread_stop). On setting the UNLOADING flag when dpc_thread happens to run at the time and sees the flag, this causes dpc_thread to exit and clean up itself. When kthread_stop is called for final cleanup, this causes use after free. Remove UNLOADING signal to terminate dpc_thread. Use the kthread_stop as the main signal to exit dpc_thread. [596663.812935] kernel BUG at mm/slub.c:294! [596663.812950] invalid opcode: 0000 [#1] SMP PTI [596663.812957] CPU: 13 PID: 1475935 Comm: rmmod Kdump: loaded Tainted: G IOE --------- - - 4.18.0-240.el8.x86_64 #1 [596663.812960] Hardware name: HP ProLiant DL380p Gen8, BIOS P70 08/20/2012 [596663.812974] RIP: 0010:__slab_free+0x17d/0x360 ... [596663.813008] Call Trace: [596663.813022] ? __dentry_kill+0x121/0x170 [596663.813030] ? _cond_resched+0x15/0x30 [596663.813034] ? _cond_resched+0x15/0x30 [596663.813039] ? wait_for_completion+0x35/0x190 [596663.813048] ? try_to_wake_up+0x63/0x540 [596663.813055] free_task+0x5a/0x60 [596663.813061] kthread_stop+0xf3/0x100 [596663.813103] qla2x00_remove_one+0x284/0x440 [qla2xxx]
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: iommufd: Fix out_fput in iommufd_fault_alloc() As fput() calls the file->f_op->release op, where fault obj and ictx are getting released, there is no need to release these two after fput() one more time, which would result in imbalanced refcounts: refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 48 PID: 2369 at lib/refcount.c:31 refcount_warn_saturate+0x60/0x230 Call trace: refcount_warn_saturate+0x60/0x230 (P) refcount_warn_saturate+0x60/0x230 (L) iommufd_fault_fops_release+0x9c/0xe0 [iommufd] ... VFS: Close: file count is 0 (f_op=iommufd_fops [iommufd]) WARNING: CPU: 48 PID: 2369 at fs/open.c:1507 filp_flush+0x3c/0xf0 Call trace: filp_flush+0x3c/0xf0 (P) filp_flush+0x3c/0xf0 (L) __arm64_sys_close+0x34/0x98 ... imbalanced put on file reference count WARNING: CPU: 48 PID: 2369 at fs/file.c:74 __file_ref_put+0x100/0x138 Call trace: __file_ref_put+0x100/0x138 (P) __file_ref_put+0x100/0x138 (L) __fput_sync+0x4c/0xd0 Drop those two lines to fix the warnings above.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: af_packet: avoid erroring out after sock_init_data() in packet_create() After sock_init_data() the allocated sk object is attached to the provided sock object. On error, packet_create() frees the sk object leaving the dangling pointer in the sock object on return. Some other code may try to use this pointer and cause use-after-free.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-12-27
In the Linux kernel, the following vulnerability has been resolved: wifi: ath12k: fix atomic calls in ath12k_mac_op_set_bitrate_mask() When I try to manually set bitrates: iw wlan0 set bitrates legacy-2.4 1 I get sleeping from invalid context error, see below. Fix that by switching to use recently introduced ieee80211_iterate_stations_mtx(). Do note that WCN6855 firmware is still crashing, I'm not sure if that firmware even supports bitrate WMI commands and should we consider disabling ath12k_mac_op_set_bitrate_mask() for WCN6855? But that's for another patch. BUG: sleeping function called from invalid context at drivers/net/wireless/ath/ath12k/wmi.c:420 in_atomic(): 0, irqs_disabled(): 0, non_block: 0, pid: 2236, name: iw preempt_count: 0, expected: 0 RCU nest depth: 1, expected: 0 3 locks held by iw/2236: #0: ffffffffabc6f1d8 (cb_lock){++++}-{3:3}, at: genl_rcv+0x14/0x40 #1: ffff888138410810 (&rdev->wiphy.mtx){+.+.}-{3:3}, at: nl80211_pre_doit+0x54d/0x800 [cfg80211] #2: ffffffffab2cfaa0 (rcu_read_lock){....}-{1:2}, at: ieee80211_iterate_stations_atomic+0x2f/0x200 [mac80211] CPU: 3 UID: 0 PID: 2236 Comm: iw Not tainted 6.11.0-rc7-wt-ath+ #1772 Hardware name: Intel(R) Client Systems NUC8i7HVK/NUC8i7HVB, BIOS HNKBLi70.86A.0067.2021.0528.1339 05/28/2021 Call Trace: <TASK> dump_stack_lvl+0xa4/0xe0 dump_stack+0x10/0x20 __might_resched+0x363/0x5a0 ? __alloc_skb+0x165/0x340 __might_sleep+0xad/0x160 ath12k_wmi_cmd_send+0xb1/0x3d0 [ath12k] ? ath12k_wmi_init_wcn7850+0xa40/0xa40 [ath12k] ? __netdev_alloc_skb+0x45/0x7b0 ? __asan_memset+0x39/0x40 ? ath12k_wmi_alloc_skb+0xf0/0x150 [ath12k] ? reacquire_held_locks+0x4d0/0x4d0 ath12k_wmi_set_peer_param+0x340/0x5b0 [ath12k] ath12k_mac_disable_peer_fixed_rate+0xa3/0x110 [ath12k] ? ath12k_mac_vdev_stop+0x4f0/0x4f0 [ath12k] ieee80211_iterate_stations_atomic+0xd4/0x200 [mac80211] ath12k_mac_op_set_bitrate_mask+0x5d2/0x1080 [ath12k] ? ath12k_mac_vif_chan+0x320/0x320 [ath12k] drv_set_bitrate_mask+0x267/0x470 [mac80211] ieee80211_set_bitrate_mask+0x4cc/0x8a0 [mac80211] ? __this_cpu_preempt_check+0x13/0x20 nl80211_set_tx_bitrate_mask+0x2bc/0x530 [cfg80211] ? nl80211_parse_tx_bitrate_mask+0x2320/0x2320 [cfg80211] ? trace_contention_end+0xef/0x140 ? rtnl_unlock+0x9/0x10 ? nl80211_pre_doit+0x557/0x800 [cfg80211] genl_family_rcv_msg_doit+0x1f0/0x2e0 ? genl_family_rcv_msg_attrs_parse.isra.0+0x250/0x250 ? ns_capable+0x57/0xd0 genl_family_rcv_msg+0x34c/0x600 ? genl_family_rcv_msg_dumpit+0x310/0x310 ? __lock_acquire+0xc62/0x1de0 ? he_set_mcs_mask.isra.0+0x8d0/0x8d0 [cfg80211] ? nl80211_parse_tx_bitrate_mask+0x2320/0x2320 [cfg80211] ? cfg80211_external_auth_request+0x690/0x690 [cfg80211] genl_rcv_msg+0xa0/0x130 netlink_rcv_skb+0x14c/0x400 ? genl_family_rcv_msg+0x600/0x600 ? netlink_ack+0xd70/0xd70 ? rwsem_optimistic_spin+0x4f0/0x4f0 ? genl_rcv+0x14/0x40 ? down_read_killable+0x580/0x580 ? netlink_deliver_tap+0x13e/0x350 ? __this_cpu_preempt_check+0x13/0x20 genl_rcv+0x23/0x40 netlink_unicast+0x45e/0x790 ? netlink_attachskb+0x7f0/0x7f0 netlink_sendmsg+0x7eb/0xdb0 ? netlink_unicast+0x790/0x790 ? __this_cpu_preempt_check+0x13/0x20 ? selinux_socket_sendmsg+0x31/0x40 ? netlink_unicast+0x790/0x790 __sock_sendmsg+0xc9/0x160 ____sys_sendmsg+0x620/0x990 ? kernel_sendmsg+0x30/0x30 ? __copy_msghdr+0x410/0x410 ? __kasan_check_read+0x11/0x20 ? mark_lock+0xe6/0x1470 ___sys_sendmsg+0xe9/0x170 ? copy_msghdr_from_user+0x120/0x120 ? __lock_acquire+0xc62/0x1de0 ? do_fault_around+0x2c6/0x4e0 ? do_user_addr_fault+0x8c1/0xde0 ? reacquire_held_locks+0x220/0x4d0 ? do_user_addr_fault+0x8c1/0xde0 ? __kasan_check_read+0x11/0x20 ? __fdget+0x4e/0x1d0 ? sockfd_lookup_light+0x1a/0x170 __sys_sendmsg+0xd2/0x180 ? __sys_sendmsg_sock+0x20/0x20 ? reacquire_held_locks+0x4d0/0x4d0 ? debug_smp_processor_id+0x17/0x20 __x64_sys_sendmsg+0x72/0xb0 ? lockdep_hardirqs_on+0x7d/0x100 x64_sys_call+0x894/0x9f0 do_syscall_64+0x64/0x130 entry_SYSCALL_64_after_ ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2024-12-27


Contact Us

Shodan ® - All rights reserved