Security Vulnerabilities
- CVEs Published In December 2024
In the Linux kernel, the following vulnerability has been resolved:
ad7780: fix division by zero in ad7780_write_raw()
In the ad7780_write_raw() , val2 can be zero, which might lead to a
division by zero error in DIV_ROUND_CLOSEST(). The ad7780_write_raw()
is based on iio_info's write_raw. While val is explicitly declared that
can be zero (in read mode), val2 is not specified to be non-zero.
In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu: Defer probe of clients after smmu device bound
Null pointer dereference occurs due to a race between smmu
driver probe and client driver probe, when of_dma_configure()
for client is called after the iommu_device_register() for smmu driver
probe has executed but before the driver_bound() for smmu driver
has been called.
Following is how the race occurs:
T1:Smmu device probe T2: Client device probe
really_probe()
arm_smmu_device_probe()
iommu_device_register()
really_probe()
platform_dma_configure()
of_dma_configure()
of_dma_configure_id()
of_iommu_configure()
iommu_probe_device()
iommu_init_device()
arm_smmu_probe_device()
arm_smmu_get_by_fwnode()
driver_find_device_by_fwnode()
driver_find_device()
next_device()
klist_next()
/* null ptr
assigned to smmu */
/* null ptr dereference
while smmu->streamid_mask */
driver_bound()
klist_add_tail()
When this null smmu pointer is dereferenced later in
arm_smmu_probe_device, the device crashes.
Fix this by deferring the probe of the client device
until the smmu device has bound to the arm smmu driver.
[will: Add comment]
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix regression with module command in stack_trace_filter
When executing the following command:
# echo "write*:mod:ext3" > /sys/kernel/tracing/stack_trace_filter
The current mod command causes a null pointer dereference. While commit
0f17976568b3f ("ftrace: Fix regression with module command in stack_trace_filter")
has addressed part of the issue, it left a corner case unhandled, which still
results in a kernel crash.
In the Linux kernel, the following vulnerability has been resolved:
binder: fix memleak of proc->delivered_freeze
If a freeze notification is cleared with BC_CLEAR_FREEZE_NOTIFICATION
before calling binder_freeze_notification_done(), then it is detached
from its reference (e.g. ref->freeze) but the work remains queued in
proc->delivered_freeze. This leads to a memory leak when the process
exits as any pending entries in proc->delivered_freeze are not freed:
unreferenced object 0xffff38e8cfa36180 (size 64):
comm "binder-util", pid 655, jiffies 4294936641
hex dump (first 32 bytes):
b8 e9 9e c8 e8 38 ff ff b8 e9 9e c8 e8 38 ff ff .....8.......8..
0b 00 00 00 00 00 00 00 3c 1f 4b 00 00 00 00 00 ........<.K.....
backtrace (crc 95983b32):
[<000000000d0582cf>] kmemleak_alloc+0x34/0x40
[<000000009c99a513>] __kmalloc_cache_noprof+0x208/0x280
[<00000000313b1704>] binder_thread_write+0xdec/0x439c
[<000000000cbd33bb>] binder_ioctl+0x1b68/0x22cc
[<000000002bbedeeb>] __arm64_sys_ioctl+0x124/0x190
[<00000000b439adee>] invoke_syscall+0x6c/0x254
[<00000000173558fc>] el0_svc_common.constprop.0+0xac/0x230
[<0000000084f72311>] do_el0_svc+0x40/0x58
[<000000008b872457>] el0_svc+0x38/0x78
[<00000000ee778653>] el0t_64_sync_handler+0x120/0x12c
[<00000000a8ec61bf>] el0t_64_sync+0x190/0x194
This patch fixes the leak by ensuring that any pending entries in
proc->delivered_freeze are freed during binder_deferred_release().
In the Linux kernel, the following vulnerability has been resolved:
binder: fix freeze UAF in binder_release_work()
When a binder reference is cleaned up, any freeze work queued in the
associated process should also be removed. Otherwise, the reference is
freed while its ref->freeze.work is still queued in proc->work leading
to a use-after-free issue as shown by the following KASAN report:
==================================================================
BUG: KASAN: slab-use-after-free in binder_release_work+0x398/0x3d0
Read of size 8 at addr ffff31600ee91488 by task kworker/5:1/211
CPU: 5 UID: 0 PID: 211 Comm: kworker/5:1 Not tainted 6.11.0-rc7-00382-gfc6c92196396 #22
Hardware name: linux,dummy-virt (DT)
Workqueue: events binder_deferred_func
Call trace:
binder_release_work+0x398/0x3d0
binder_deferred_func+0xb60/0x109c
process_one_work+0x51c/0xbd4
worker_thread+0x608/0xee8
Allocated by task 703:
__kmalloc_cache_noprof+0x130/0x280
binder_thread_write+0xdb4/0x42a0
binder_ioctl+0x18f0/0x25ac
__arm64_sys_ioctl+0x124/0x190
invoke_syscall+0x6c/0x254
Freed by task 211:
kfree+0xc4/0x230
binder_deferred_func+0xae8/0x109c
process_one_work+0x51c/0xbd4
worker_thread+0x608/0xee8
==================================================================
This commit fixes the issue by ensuring any queued freeze work is removed
when cleaning up a binder reference.
In the Linux kernel, the following vulnerability has been resolved:
binder: fix OOB in binder_add_freeze_work()
In binder_add_freeze_work() we iterate over the proc->nodes with the
proc->inner_lock held. However, this lock is temporarily dropped to
acquire the node->lock first (lock nesting order). This can race with
binder_deferred_release() which removes the nodes from the proc->nodes
rbtree and adds them into binder_dead_nodes list. This leads to a broken
iteration in binder_add_freeze_work() as rb_next() will use data from
binder_dead_nodes, triggering an out-of-bounds access:
==================================================================
BUG: KASAN: global-out-of-bounds in rb_next+0xfc/0x124
Read of size 8 at addr ffffcb84285f7170 by task freeze/660
CPU: 8 UID: 0 PID: 660 Comm: freeze Not tainted 6.11.0-07343-ga727812a8d45 #18
Hardware name: linux,dummy-virt (DT)
Call trace:
rb_next+0xfc/0x124
binder_add_freeze_work+0x344/0x534
binder_ioctl+0x1e70/0x25ac
__arm64_sys_ioctl+0x124/0x190
The buggy address belongs to the variable:
binder_dead_nodes+0x10/0x40
[...]
==================================================================
This is possible because proc->nodes (rbtree) and binder_dead_nodes
(list) share entries in binder_node through a union:
struct binder_node {
[...]
union {
struct rb_node rb_node;
struct hlist_node dead_node;
};
Fix the race by checking that the proc is still alive. If not, simply
break out of the iteration.
In the Linux kernel, the following vulnerability has been resolved:
binder: fix node UAF in binder_add_freeze_work()
In binder_add_freeze_work() we iterate over the proc->nodes with the
proc->inner_lock held. However, this lock is temporarily dropped in
order to acquire the node->lock first (lock nesting order). This can
race with binder_node_release() and trigger a use-after-free:
==================================================================
BUG: KASAN: slab-use-after-free in _raw_spin_lock+0xe4/0x19c
Write of size 4 at addr ffff53c04c29dd04 by task freeze/640
CPU: 5 UID: 0 PID: 640 Comm: freeze Not tainted 6.11.0-07343-ga727812a8d45 #17
Hardware name: linux,dummy-virt (DT)
Call trace:
_raw_spin_lock+0xe4/0x19c
binder_add_freeze_work+0x148/0x478
binder_ioctl+0x1e70/0x25ac
__arm64_sys_ioctl+0x124/0x190
Allocated by task 637:
__kmalloc_cache_noprof+0x12c/0x27c
binder_new_node+0x50/0x700
binder_transaction+0x35ac/0x6f74
binder_thread_write+0xfb8/0x42a0
binder_ioctl+0x18f0/0x25ac
__arm64_sys_ioctl+0x124/0x190
Freed by task 637:
kfree+0xf0/0x330
binder_thread_read+0x1e88/0x3a68
binder_ioctl+0x16d8/0x25ac
__arm64_sys_ioctl+0x124/0x190
==================================================================
Fix the race by taking a temporary reference on the node before
releasing the proc->inner lock. This ensures the node remains alive
while in use.
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ad7923: Fix buffer overflow for tx_buf and ring_xfer
The AD7923 was updated to support devices with 8 channels, but the size
of tx_buf and ring_xfer was not increased accordingly, leading to a
potential buffer overflow in ad7923_update_scan_mode().
In the Linux kernel, the following vulnerability has been resolved:
nfsd: make sure exp active before svc_export_show
The function `e_show` was called with protection from RCU. This only
ensures that `exp` will not be freed. Therefore, the reference count for
`exp` can drop to zero, which will trigger a refcount use-after-free
warning when `exp_get` is called. To resolve this issue, use
`cache_get_rcu` to ensure that `exp` remains active.
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 3 PID: 819 at lib/refcount.c:25
refcount_warn_saturate+0xb1/0x120
CPU: 3 UID: 0 PID: 819 Comm: cat Not tainted 6.12.0-rc3+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb1/0x120
...
Call Trace:
<TASK>
e_show+0x20b/0x230 [nfsd]
seq_read_iter+0x589/0x770
seq_read+0x1e5/0x270
vfs_read+0x125/0x530
ksys_read+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e
In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: Fix PCI domain ID release in pci_epc_destroy()
pci_epc_destroy() invokes pci_bus_release_domain_nr() to release the PCI
domain ID, but there are two issues:
- 'epc->dev' is passed to pci_bus_release_domain_nr() which was already
freed by device_unregister(), leading to a use-after-free issue.
- Domain ID corresponds to the EPC device parent, so passing 'epc->dev'
is also wrong.
Fix these issues by passing 'epc->dev.parent' to
pci_bus_release_domain_nr() and also do it before device_unregister().
[mani: reworded subject and description]