Security Vulnerabilities
- CVEs Published In December 2024
In the Linux kernel, the following vulnerability has been resolved:
vp_vdpa: fix id_table array not null terminated error
Allocate one extra virtio_device_id as null terminator, otherwise
vdpa_mgmtdev_get_classes() may iterate multiple times and visit
undefined memory.
In the Linux kernel, the following vulnerability has been resolved:
mm/mremap: fix address wraparound in move_page_tables()
On 32-bit platforms, it is possible for the expression `len + old_addr <
old_end` to be false-positive if `len + old_addr` wraps around.
`old_addr` is the cursor in the old range up to which page table entries
have been moved; so if the operation succeeded, `old_addr` is the *end* of
the old region, and adding `len` to it can wrap.
The overflow causes mremap() to mistakenly believe that PTEs have been
copied; the consequence is that mremap() bails out, but doesn't move the
PTEs back before the new VMA is unmapped, causing anonymous pages in the
region to be lost. So basically if userspace tries to mremap() a
private-anon region and hits this bug, mremap() will return an error and
the private-anon region's contents appear to have been zeroed.
The idea of this check is that `old_end - len` is the original start
address, and writing the check that way also makes it easier to read; so
fix the check by rearranging the comparison accordingly.
(An alternate fix would be to refactor this function by introducing an
"orig_old_start" variable or such.)
Tested in a VM with a 32-bit X86 kernel; without the patch:
```
user@horn:~/big_mremap$ cat test.c
#define _GNU_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <err.h>
#include <sys/mman.h>
#define ADDR1 ((void*)0x60000000)
#define ADDR2 ((void*)0x10000000)
#define SIZE 0x50000000uL
int main(void) {
unsigned char *p1 = mmap(ADDR1, SIZE, PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0);
if (p1 == MAP_FAILED)
err(1, "mmap 1");
unsigned char *p2 = mmap(ADDR2, SIZE, PROT_NONE,
MAP_ANONYMOUS|MAP_PRIVATE|MAP_FIXED_NOREPLACE, -1, 0);
if (p2 == MAP_FAILED)
err(1, "mmap 2");
*p1 = 0x41;
printf("first char is 0x%02hhx\n", *p1);
unsigned char *p3 = mremap(p1, SIZE, SIZE,
MREMAP_MAYMOVE|MREMAP_FIXED, p2);
if (p3 == MAP_FAILED) {
printf("mremap() failed; first char is 0x%02hhx\n", *p1);
} else {
printf("mremap() succeeded; first char is 0x%02hhx\n", *p3);
}
}
user@horn:~/big_mremap$ gcc -static -o test test.c
user@horn:~/big_mremap$ setarch -R ./test
first char is 0x41
mremap() failed; first char is 0x00
```
With the patch:
```
user@horn:~/big_mremap$ setarch -R ./test
first char is 0x41
mremap() succeeded; first char is 0x41
```
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: uncache inode which has failed entering the group
Syzbot has reported the following BUG:
kernel BUG at fs/ocfs2/uptodate.c:509!
...
Call Trace:
<TASK>
? __die_body+0x5f/0xb0
? die+0x9e/0xc0
? do_trap+0x15a/0x3a0
? ocfs2_set_new_buffer_uptodate+0x145/0x160
? do_error_trap+0x1dc/0x2c0
? ocfs2_set_new_buffer_uptodate+0x145/0x160
? __pfx_do_error_trap+0x10/0x10
? handle_invalid_op+0x34/0x40
? ocfs2_set_new_buffer_uptodate+0x145/0x160
? exc_invalid_op+0x38/0x50
? asm_exc_invalid_op+0x1a/0x20
? ocfs2_set_new_buffer_uptodate+0x2e/0x160
? ocfs2_set_new_buffer_uptodate+0x144/0x160
? ocfs2_set_new_buffer_uptodate+0x145/0x160
ocfs2_group_add+0x39f/0x15a0
? __pfx_ocfs2_group_add+0x10/0x10
? __pfx_lock_acquire+0x10/0x10
? mnt_get_write_access+0x68/0x2b0
? __pfx_lock_release+0x10/0x10
? rcu_read_lock_any_held+0xb7/0x160
? __pfx_rcu_read_lock_any_held+0x10/0x10
? smack_log+0x123/0x540
? mnt_get_write_access+0x68/0x2b0
? mnt_get_write_access+0x68/0x2b0
? mnt_get_write_access+0x226/0x2b0
ocfs2_ioctl+0x65e/0x7d0
? __pfx_ocfs2_ioctl+0x10/0x10
? smack_file_ioctl+0x29e/0x3a0
? __pfx_smack_file_ioctl+0x10/0x10
? lockdep_hardirqs_on_prepare+0x43d/0x780
? __pfx_lockdep_hardirqs_on_prepare+0x10/0x10
? __pfx_ocfs2_ioctl+0x10/0x10
__se_sys_ioctl+0xfb/0x170
do_syscall_64+0xf3/0x230
entry_SYSCALL_64_after_hwframe+0x77/0x7f
...
</TASK>
When 'ioctl(OCFS2_IOC_GROUP_ADD, ...)' has failed for the particular
inode in 'ocfs2_verify_group_and_input()', corresponding buffer head
remains cached and subsequent call to the same 'ioctl()' for the same
inode issues the BUG() in 'ocfs2_set_new_buffer_uptodate()' (trying
to cache the same buffer head of that inode). Fix this by uncaching
the buffer head with 'ocfs2_remove_from_cache()' on error path in
'ocfs2_group_add()'.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Josh Leuze Meteor Slides allows Stored XSS.This issue affects Meteor Slides: from n/a through 1.5.7.
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Ben Marshall Jobify - Job Board WordPress Theme allows Stored XSS.This issue affects Jobify - Job Board WordPress Theme: from n/a through 4.2.3.
Cross-Site Request Forgery (CSRF) vulnerability in Ben Marshall Jobify - Job Board WordPress Theme allows Cross Site Request Forgery.This issue affects Jobify - Job Board WordPress Theme: from n/a through 4.2.3.
Memory corruption while invoking IOCTL calls from user space to set generic private command inside WLAN driver.
Memory corruption while invoking IOCTL calls from user space to issue factory test command inside WLAN driver.
Memory corruption while processing API calls to NPU with invalid input.
Memory corruption while invoking IOCTL calls from user space to read WLAN target diagnostic information.