Security Vulnerabilities
- CVEs Published In October 2024
In the Linux kernel, the following vulnerability has been resolved:
net: mana: Fix race on per-CQ variable napi work_done
After calling napi_complete_done(), the NAPIF_STATE_SCHED bit may be
cleared, and another CPU can start napi thread and access per-CQ variable,
cq->work_done. If the other thread (for example, from busy_poll) sets
it to a value >= budget, this thread will continue to run when it should
stop, and cause memory corruption and panic.
To fix this issue, save the per-CQ work_done variable in a local variable
before napi_complete_done(), so it won't be corrupted by a possible
concurrent thread after napi_complete_done().
Also, add a flag bit to advertise to the NIC firmware: the NAPI work_done
variable race is fixed, so the driver is able to reliably support features
like busy_poll.
In the Linux kernel, the following vulnerability has been resolved:
mm/gup: fix gup_pud_range() for dax
For dax pud, pud_huge() returns true on x86. So the function works as long
as hugetlb is configured. However, dax doesn't depend on hugetlb.
Commit 414fd080d125 ("mm/gup: fix gup_pmd_range() for dax") fixed
devmap-backed huge PMDs, but missed devmap-backed huge PUDs. Fix this as
well.
This fixes the below kernel panic:
general protection fault, probably for non-canonical address 0x69e7c000cc478: 0000 [#1] SMP
< snip >
Call Trace:
<TASK>
get_user_pages_fast+0x1f/0x40
iov_iter_get_pages+0xc6/0x3b0
? mempool_alloc+0x5d/0x170
bio_iov_iter_get_pages+0x82/0x4e0
? bvec_alloc+0x91/0xc0
? bio_alloc_bioset+0x19a/0x2a0
blkdev_direct_IO+0x282/0x480
? __io_complete_rw_common+0xc0/0xc0
? filemap_range_has_page+0x82/0xc0
generic_file_direct_write+0x9d/0x1a0
? inode_update_time+0x24/0x30
__generic_file_write_iter+0xbd/0x1e0
blkdev_write_iter+0xb4/0x150
? io_import_iovec+0x8d/0x340
io_write+0xf9/0x300
io_issue_sqe+0x3c3/0x1d30
? sysvec_reschedule_ipi+0x6c/0x80
__io_queue_sqe+0x33/0x240
? fget+0x76/0xa0
io_submit_sqes+0xe6a/0x18d0
? __fget_light+0xd1/0x100
__x64_sys_io_uring_enter+0x199/0x880
? __context_tracking_enter+0x1f/0x70
? irqentry_exit_to_user_mode+0x24/0x30
? irqentry_exit+0x1d/0x30
? __context_tracking_exit+0xe/0x70
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x61/0xcb
RIP: 0033:0x7fc97c11a7be
< snip >
</TASK>
---[ end trace 48b2e0e67debcaeb ]---
RIP: 0010:internal_get_user_pages_fast+0x340/0x990
< snip >
Kernel panic - not syncing: Fatal exception
Kernel Offset: disabled
In the Linux kernel, the following vulnerability has been resolved:
media: v4l2-dv-timings.c: fix too strict blanking sanity checks
Sanity checks were added to verify the v4l2_bt_timings blanking fields
in order to avoid integer overflows when userspace passes weird values.
But that assumed that userspace would correctly fill in the front porch,
backporch and sync values, but sometimes all you know is the total
blanking, which is then assigned to just one of these fields.
And that can fail with these checks.
So instead set a maximum for the total horizontal and vertical
blanking and check that each field remains below that.
That is still sufficient to avoid integer overflows, but it also
allows for more flexibility in how userspace fills in these fields.
In the Linux kernel, the following vulnerability has been resolved:
memcg: fix possible use-after-free in memcg_write_event_control()
memcg_write_event_control() accesses the dentry->d_name of the specified
control fd to route the write call. As a cgroup interface file can't be
renamed, it's safe to access d_name as long as the specified file is a
regular cgroup file. Also, as these cgroup interface files can't be
removed before the directory, it's safe to access the parent too.
Prior to 347c4a874710 ("memcg: remove cgroup_event->cft"), there was a
call to __file_cft() which verified that the specified file is a regular
cgroupfs file before further accesses. The cftype pointer returned from
__file_cft() was no longer necessary and the commit inadvertently dropped
the file type check with it allowing any file to slip through. With the
invarients broken, the d_name and parent accesses can now race against
renames and removals of arbitrary files and cause use-after-free's.
Fix the bug by resurrecting the file type check in __file_cft(). Now that
cgroupfs is implemented through kernfs, checking the file operations needs
to go through a layer of indirection. Instead, let's check the superblock
and dentry type.
In the Linux kernel, the following vulnerability has been resolved:
fscache: Fix oops due to race with cookie_lru and use_cookie
If a cookie expires from the LRU and the LRU_DISCARD flag is set, but
the state machine has not run yet, it's possible another thread can call
fscache_use_cookie and begin to use it.
When the cookie_worker finally runs, it will see the LRU_DISCARD flag
set, transition the cookie->state to LRU_DISCARDING, which will then
withdraw the cookie. Once the cookie is withdrawn the object is removed
the below oops will occur because the object associated with the cookie
is now NULL.
Fix the oops by clearing the LRU_DISCARD bit if another thread uses the
cookie before the cookie_worker runs.
BUG: kernel NULL pointer dereference, address: 0000000000000008
...
CPU: 31 PID: 44773 Comm: kworker/u130:1 Tainted: G E 6.0.0-5.dneg.x86_64 #1
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google 08/26/2022
Workqueue: events_unbound netfs_rreq_write_to_cache_work [netfs]
RIP: 0010:cachefiles_prepare_write+0x28/0x90 [cachefiles]
...
Call Trace:
netfs_rreq_write_to_cache_work+0x11c/0x320 [netfs]
process_one_work+0x217/0x3e0
worker_thread+0x4a/0x3b0
kthread+0xd6/0x100
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix use-after-free during gpu recovery
[Why]
[ 754.862560] refcount_t: underflow; use-after-free.
[ 754.862898] Call Trace:
[ 754.862903] <TASK>
[ 754.862913] amdgpu_job_free_cb+0xc2/0xe1 [amdgpu]
[ 754.863543] drm_sched_main.cold+0x34/0x39 [amd_sched]
[How]
The fw_fence may be not init, check whether dma_fence_init
is performed before job free
In the Linux kernel, the following vulnerability has been resolved:
xen-netfront: Fix NULL sring after live migration
A NAPI is setup for each network sring to poll data to kernel
The sring with source host is destroyed before live migration and
new sring with target host is setup after live migration.
The NAPI for the old sring is not deleted until setup new sring
with target host after migration. With busy_poll/busy_read enabled,
the NAPI can be polled before got deleted when resume VM.
BUG: unable to handle kernel NULL pointer dereference at
0000000000000008
IP: xennet_poll+0xae/0xd20
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
Call Trace:
finish_task_switch+0x71/0x230
timerqueue_del+0x1d/0x40
hrtimer_try_to_cancel+0xb5/0x110
xennet_alloc_rx_buffers+0x2a0/0x2a0
napi_busy_loop+0xdb/0x270
sock_poll+0x87/0x90
do_sys_poll+0x26f/0x580
tracing_map_insert+0x1d4/0x2f0
event_hist_trigger+0x14a/0x260
finish_task_switch+0x71/0x230
__schedule+0x256/0x890
recalc_sigpending+0x1b/0x50
xen_sched_clock+0x15/0x20
__rb_reserve_next+0x12d/0x140
ring_buffer_lock_reserve+0x123/0x3d0
event_triggers_call+0x87/0xb0
trace_event_buffer_commit+0x1c4/0x210
xen_clocksource_get_cycles+0x15/0x20
ktime_get_ts64+0x51/0xf0
SyS_ppoll+0x160/0x1a0
SyS_ppoll+0x160/0x1a0
do_syscall_64+0x73/0x130
entry_SYSCALL_64_after_hwframe+0x41/0xa6
...
RIP: xennet_poll+0xae/0xd20 RSP: ffffb4f041933900
CR2: 0000000000000008
---[ end trace f8601785b354351c ]---
xen frontend should remove the NAPIs for the old srings before live
migration as the bond srings are destroyed
There is a tiny window between the srings are set to NULL and
the NAPIs are disabled, It is safe as the NAPI threads are still
frozen at that time
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Get user_ns from in_skb in unix_diag_get_exact().
Wei Chen reported a NULL deref in sk_user_ns() [0][1], and Paolo diagnosed
the root cause: in unix_diag_get_exact(), the newly allocated skb does not
have sk. [2]
We must get the user_ns from the NETLINK_CB(in_skb).sk and pass it to
sk_diag_fill().
[0]:
BUG: kernel NULL pointer dereference, address: 0000000000000270
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 12bbce067 P4D 12bbce067 PUD 12bc40067 PMD 0
Oops: 0000 [#1] PREEMPT SMP
CPU: 0 PID: 27942 Comm: syz-executor.0 Not tainted 6.1.0-rc5-next-20221118 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014
RIP: 0010:sk_user_ns include/net/sock.h:920 [inline]
RIP: 0010:sk_diag_dump_uid net/unix/diag.c:119 [inline]
RIP: 0010:sk_diag_fill+0x77d/0x890 net/unix/diag.c:170
Code: 89 ef e8 66 d4 2d fd c7 44 24 40 00 00 00 00 49 8d 7c 24 18 e8
54 d7 2d fd 49 8b 5c 24 18 48 8d bb 70 02 00 00 e8 43 d7 2d fd <48> 8b
9b 70 02 00 00 48 8d 7b 10 e8 33 d7 2d fd 48 8b 5b 10 48 8d
RSP: 0018:ffffc90000d67968 EFLAGS: 00010246
RAX: ffff88812badaa48 RBX: 0000000000000000 RCX: ffffffff840d481d
RDX: 0000000000000465 RSI: 0000000000000000 RDI: 0000000000000270
RBP: ffffc90000d679a8 R08: 0000000000000277 R09: 0000000000000000
R10: 0001ffffffffffff R11: 0001c90000d679a8 R12: ffff88812ac03800
R13: ffff88812c87c400 R14: ffff88812ae42210 R15: ffff888103026940
FS: 00007f08b4e6f700(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000270 CR3: 000000012c58b000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
unix_diag_get_exact net/unix/diag.c:285 [inline]
unix_diag_handler_dump+0x3f9/0x500 net/unix/diag.c:317
__sock_diag_cmd net/core/sock_diag.c:235 [inline]
sock_diag_rcv_msg+0x237/0x250 net/core/sock_diag.c:266
netlink_rcv_skb+0x13e/0x250 net/netlink/af_netlink.c:2564
sock_diag_rcv+0x24/0x40 net/core/sock_diag.c:277
netlink_unicast_kernel net/netlink/af_netlink.c:1330 [inline]
netlink_unicast+0x5e9/0x6b0 net/netlink/af_netlink.c:1356
netlink_sendmsg+0x739/0x860 net/netlink/af_netlink.c:1932
sock_sendmsg_nosec net/socket.c:714 [inline]
sock_sendmsg net/socket.c:734 [inline]
____sys_sendmsg+0x38f/0x500 net/socket.c:2476
___sys_sendmsg net/socket.c:2530 [inline]
__sys_sendmsg+0x197/0x230 net/socket.c:2559
__do_sys_sendmsg net/socket.c:2568 [inline]
__se_sys_sendmsg net/socket.c:2566 [inline]
__x64_sys_sendmsg+0x42/0x50 net/socket.c:2566
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x70 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x4697f9
Code: f7 d8 64 89 02 b8 ff ff ff ff c3 66 0f 1f 44 00 00 48 89 f8 48
89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d
01 f0 ff ff 73 01 c3 48 c7 c1 bc ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f08b4e6ec48 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 000000000077bf80 RCX: 00000000004697f9
RDX: 0000000000000000 RSI: 00000000200001c0 RDI: 0000000000000003
RBP: 00000000004d29e9 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000077bf80
R13: 0000000000000000 R14: 000000000077bf80 R15: 00007ffdb36bc6c0
</TASK>
Modules linked in:
CR2: 0000000000000270
[1]: https://lore.kernel.org/netdev/CAO4mrfdvyjFpokhNsiwZiP-wpdSD0AStcJwfKcKQdAALQ9_2Qw@mail.gmail.com/
[2]: https://lore.kernel.org/netdev/e04315e7c90d9a75613f3993c2baf2d344eef7eb.camel@redhat.com/
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix not cleanup led when bt_init fails
bt_init() calls bt_leds_init() to register led, but if it fails later,
bt_leds_cleanup() is not called to unregister it.
This can cause panic if the argument "bluetooth-power" in text is freed
and then another led_trigger_register() tries to access it:
BUG: unable to handle page fault for address: ffffffffc06d3bc0
RIP: 0010:strcmp+0xc/0x30
Call Trace:
<TASK>
led_trigger_register+0x10d/0x4f0
led_trigger_register_simple+0x7d/0x100
bt_init+0x39/0xf7 [bluetooth]
do_one_initcall+0xd0/0x4e0
In the Linux kernel, the following vulnerability has been resolved:
mac802154: fix missing INIT_LIST_HEAD in ieee802154_if_add()
Kernel fault injection test reports null-ptr-deref as follows:
BUG: kernel NULL pointer dereference, address: 0000000000000008
RIP: 0010:cfg802154_netdev_notifier_call+0x120/0x310 include/linux/list.h:114
Call Trace:
<TASK>
raw_notifier_call_chain+0x6d/0xa0 kernel/notifier.c:87
call_netdevice_notifiers_info+0x6e/0xc0 net/core/dev.c:1944
unregister_netdevice_many_notify+0x60d/0xcb0 net/core/dev.c:1982
unregister_netdevice_queue+0x154/0x1a0 net/core/dev.c:10879
register_netdevice+0x9a8/0xb90 net/core/dev.c:10083
ieee802154_if_add+0x6ed/0x7e0 net/mac802154/iface.c:659
ieee802154_register_hw+0x29c/0x330 net/mac802154/main.c:229
mcr20a_probe+0xaaa/0xcb1 drivers/net/ieee802154/mcr20a.c:1316
ieee802154_if_add() allocates wpan_dev as netdev's private data, but not
init the list in struct wpan_dev. cfg802154_netdev_notifier_call() manage
the list when device register/unregister, and may lead to null-ptr-deref.
Use INIT_LIST_HEAD() on it to initialize it correctly.