Security Vulnerabilities
- CVEs Published In October 2024
In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix sleep from invalid context bug in btrfs_qgroup_inherit()
Syzkaller reported BUG as follows:
BUG: sleeping function called from invalid context at
include/linux/sched/mm.h:274
Call Trace:
<TASK>
dump_stack_lvl+0xcd/0x134
__might_resched.cold+0x222/0x26b
kmem_cache_alloc+0x2e7/0x3c0
update_qgroup_limit_item+0xe1/0x390
btrfs_qgroup_inherit+0x147b/0x1ee0
create_subvol+0x4eb/0x1710
btrfs_mksubvol+0xfe5/0x13f0
__btrfs_ioctl_snap_create+0x2b0/0x430
btrfs_ioctl_snap_create_v2+0x25a/0x520
btrfs_ioctl+0x2a1c/0x5ce0
__x64_sys_ioctl+0x193/0x200
do_syscall_64+0x35/0x80
Fix this by calling qgroup_dirty() on @dstqgroup, and update limit item in
btrfs_run_qgroups() later outside of the spinlock context.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: ops: Fix bounds check for _sx controls
For _sx controls the semantics of the max field is not the usual one, max
is the number of steps rather than the maximum value. This means that our
check in snd_soc_put_volsw_sx() needs to just check against the maximum
value.
In the Linux kernel, the following vulnerability has been resolved:
tracing: Free buffers when a used dynamic event is removed
After 65536 dynamic events have been added and removed, the "type" field
of the event then uses the first type number that is available (not
currently used by other events). A type number is the identifier of the
binary blobs in the tracing ring buffer (known as events) to map them to
logic that can parse the binary blob.
The issue is that if a dynamic event (like a kprobe event) is traced and
is in the ring buffer, and then that event is removed (because it is
dynamic, which means it can be created and destroyed), if another dynamic
event is created that has the same number that new event's logic on
parsing the binary blob will be used.
To show how this can be an issue, the following can crash the kernel:
# cd /sys/kernel/tracing
# for i in `seq 65536`; do
echo 'p:kprobes/foo do_sys_openat2 $arg1:u32' > kprobe_events
# done
For every iteration of the above, the writing to the kprobe_events will
remove the old event and create a new one (with the same format) and
increase the type number to the next available on until the type number
reaches over 65535 which is the max number for the 16 bit type. After it
reaches that number, the logic to allocate a new number simply looks for
the next available number. When an dynamic event is removed, that number
is then available to be reused by the next dynamic event created. That is,
once the above reaches the max number, the number assigned to the event in
that loop will remain the same.
Now that means deleting one dynamic event and created another will reuse
the previous events type number. This is where bad things can happen.
After the above loop finishes, the kprobes/foo event which reads the
do_sys_openat2 function call's first parameter as an integer.
# echo 1 > kprobes/foo/enable
# cat /etc/passwd > /dev/null
# cat trace
cat-2211 [005] .... 2007.849603: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
cat-2211 [005] .... 2007.849620: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
cat-2211 [005] .... 2007.849838: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
cat-2211 [005] .... 2007.849880: foo: (do_sys_openat2+0x0/0x130) arg1=4294967196
# echo 0 > kprobes/foo/enable
Now if we delete the kprobe and create a new one that reads a string:
# echo 'p:kprobes/foo do_sys_openat2 +0($arg2):string' > kprobe_events
And now we can the trace:
# cat trace
sendmail-1942 [002] ..... 530.136320: foo: (do_sys_openat2+0x0/0x240) arg1= cat-2046 [004] ..... 530.930817: foo: (do_sys_openat2+0x0/0x240) arg1="������������������������������������������������������������������������������������������������"
cat-2046 [004] ..... 530.930961: foo: (do_sys_openat2+0x0/0x240) arg1="������������������������������������������������������������������������������������������������"
cat-2046 [004] ..... 530.934278: foo: (do_sys_openat2+0x0/0x240) arg1="������������������������������������������������������������������������������������������������"
cat-2046 [004] ..... 530.934563: foo: (do_sys_openat2+0x0/0x240) arg1="���������������������������������������
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix NULL pointer dereference in nilfs_palloc_commit_free_entry()
Syzbot reported a null-ptr-deref bug:
NILFS (loop0): segctord starting. Construction interval = 5 seconds, CP
frequency < 30 seconds
general protection fault, probably for non-canonical address
0xdffffc0000000002: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000010-0x0000000000000017]
CPU: 1 PID: 3603 Comm: segctord Not tainted
6.1.0-rc2-syzkaller-00105-gb229b6ca5abb #0
Hardware name: Google Compute Engine/Google Compute Engine, BIOS Google
10/11/2022
RIP: 0010:nilfs_palloc_commit_free_entry+0xe5/0x6b0
fs/nilfs2/alloc.c:608
Code: 00 00 00 00 fc ff df 80 3c 02 00 0f 85 cd 05 00 00 48 b8 00 00 00
00 00 fc ff df 4c 8b 73 08 49 8d 7e 10 48 89 fa 48 c1 ea 03 <80> 3c 02
00 0f 85 26 05 00 00 49 8b 46 10 be a6 00 00 00 48 c7 c7
RSP: 0018:ffffc90003dff830 EFLAGS: 00010212
RAX: dffffc0000000000 RBX: ffff88802594e218 RCX: 000000000000000d
RDX: 0000000000000002 RSI: 0000000000002000 RDI: 0000000000000010
RBP: ffff888071880222 R08: 0000000000000005 R09: 000000000000003f
R10: 000000000000000d R11: 0000000000000000 R12: ffff888071880158
R13: ffff88802594e220 R14: 0000000000000000 R15: 0000000000000004
FS: 0000000000000000(0000) GS:ffff8880b9b00000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb1c08316a8 CR3: 0000000018560000 CR4: 0000000000350ee0
Call Trace:
<TASK>
nilfs_dat_commit_free fs/nilfs2/dat.c:114 [inline]
nilfs_dat_commit_end+0x464/0x5f0 fs/nilfs2/dat.c:193
nilfs_dat_commit_update+0x26/0x40 fs/nilfs2/dat.c:236
nilfs_btree_commit_update_v+0x87/0x4a0 fs/nilfs2/btree.c:1940
nilfs_btree_commit_propagate_v fs/nilfs2/btree.c:2016 [inline]
nilfs_btree_propagate_v fs/nilfs2/btree.c:2046 [inline]
nilfs_btree_propagate+0xa00/0xd60 fs/nilfs2/btree.c:2088
nilfs_bmap_propagate+0x73/0x170 fs/nilfs2/bmap.c:337
nilfs_collect_file_data+0x45/0xd0 fs/nilfs2/segment.c:568
nilfs_segctor_apply_buffers+0x14a/0x470 fs/nilfs2/segment.c:1018
nilfs_segctor_scan_file+0x3f4/0x6f0 fs/nilfs2/segment.c:1067
nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1197 [inline]
nilfs_segctor_collect fs/nilfs2/segment.c:1503 [inline]
nilfs_segctor_do_construct+0x12fc/0x6af0 fs/nilfs2/segment.c:2045
nilfs_segctor_construct+0x8e3/0xb30 fs/nilfs2/segment.c:2379
nilfs_segctor_thread_construct fs/nilfs2/segment.c:2487 [inline]
nilfs_segctor_thread+0x3c3/0xf30 fs/nilfs2/segment.c:2570
kthread+0x2e4/0x3a0 kernel/kthread.c:376
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306
</TASK>
...
If DAT metadata file is corrupted on disk, there is a case where
req->pr_desc_bh is NULL and blocknr is 0 at nilfs_dat_commit_end() during
a b-tree operation that cascadingly updates ancestor nodes of the b-tree,
because nilfs_dat_commit_alloc() for a lower level block can initialize
the blocknr on the same DAT entry between nilfs_dat_prepare_end() and
nilfs_dat_commit_end().
If this happens, nilfs_dat_commit_end() calls nilfs_dat_commit_free()
without valid buffer heads in req->pr_desc_bh and req->pr_bitmap_bh, and
causes the NULL pointer dereference above in
nilfs_palloc_commit_free_entry() function, which leads to a crash.
Fix this by adding a NULL check on req->pr_desc_bh and req->pr_bitmap_bh
before nilfs_palloc_commit_free_entry() in nilfs_dat_commit_free().
This also calls nilfs_error() in that case to notify that there is a fatal
flaw in the filesystem metadata and prevent further operations.
In the Linux kernel, the following vulnerability has been resolved:
can: can327: can327_feed_frame_to_netdev(): fix potential skb leak when netdev is down
In can327_feed_frame_to_netdev(), it did not free the skb when netdev
is down, and all callers of can327_feed_frame_to_netdev() did not free
allocated skb too. That would trigger skb leak.
Fix it by adding kfree_skb() in can327_feed_frame_to_netdev() when netdev
is down. Not tested, just compiled.
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (asus-ec-sensors) Add checks for devm_kcalloc
As the devm_kcalloc may return NULL, the return value needs to be checked
to avoid NULL poineter dereference.
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (coretemp) Check for null before removing sysfs attrs
If coretemp_add_core() gets an error then pdata->core_data[indx]
is already NULL and has been kfreed. Don't pass that to
sysfs_remove_group() as that will crash in sysfs_remove_group().
[Shortened for readability]
[91854.020159] sysfs: cannot create duplicate filename '/devices/platform/coretemp.0/hwmon/hwmon2/temp20_label'
<cpu offline>
[91855.126115] BUG: kernel NULL pointer dereference, address: 0000000000000188
[91855.165103] #PF: supervisor read access in kernel mode
[91855.194506] #PF: error_code(0x0000) - not-present page
[91855.224445] PGD 0 P4D 0
[91855.238508] Oops: 0000 [#1] PREEMPT SMP PTI
...
[91855.342716] RIP: 0010:sysfs_remove_group+0xc/0x80
...
[91855.796571] Call Trace:
[91855.810524] coretemp_cpu_offline+0x12b/0x1dd [coretemp]
[91855.841738] ? coretemp_cpu_online+0x180/0x180 [coretemp]
[91855.871107] cpuhp_invoke_callback+0x105/0x4b0
[91855.893432] cpuhp_thread_fun+0x8e/0x150
...
Fix this by checking for NULL first.
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (coretemp) fix pci device refcount leak in nv1a_ram_new()
As comment of pci_get_domain_bus_and_slot() says, it returns
a pci device with refcount increment, when finish using it,
the caller must decrement the reference count by calling
pci_dev_put(). So call it after using to avoid refcount leak.
In the Linux kernel, the following vulnerability has been resolved:
afs: Fix server->active leak in afs_put_server
The atomic_read was accidentally replaced with atomic_inc_return,
which prevents the server from getting cleaned up and causes rmmod
to hang with a warning:
Can't purge s=00000001
In the Linux kernel, the following vulnerability has been resolved:
sctp: fix memory leak in sctp_stream_outq_migrate()
When sctp_stream_outq_migrate() is called to release stream out resources,
the memory pointed to by prio_head in stream out is not released.
The memory leak information is as follows:
unreferenced object 0xffff88801fe79f80 (size 64):
comm "sctp_repo", pid 7957, jiffies 4294951704 (age 36.480s)
hex dump (first 32 bytes):
80 9f e7 1f 80 88 ff ff 80 9f e7 1f 80 88 ff ff ................
90 9f e7 1f 80 88 ff ff 90 9f e7 1f 80 88 ff ff ................
backtrace:
[<ffffffff81b215c6>] kmalloc_trace+0x26/0x60
[<ffffffff88ae517c>] sctp_sched_prio_set+0x4cc/0x770
[<ffffffff88ad64f2>] sctp_stream_init_ext+0xd2/0x1b0
[<ffffffff88aa2604>] sctp_sendmsg_to_asoc+0x1614/0x1a30
[<ffffffff88ab7ff1>] sctp_sendmsg+0xda1/0x1ef0
[<ffffffff87f765ed>] inet_sendmsg+0x9d/0xe0
[<ffffffff8754b5b3>] sock_sendmsg+0xd3/0x120
[<ffffffff8755446a>] __sys_sendto+0x23a/0x340
[<ffffffff87554651>] __x64_sys_sendto+0xe1/0x1b0
[<ffffffff89978b49>] do_syscall_64+0x39/0xb0
[<ffffffff89a0008b>] entry_SYSCALL_64_after_hwframe+0x63/0xcd