Security Vulnerabilities
- CVEs Published In October 2024
In the Linux kernel, the following vulnerability has been resolved:
io_uring: check if we need to reschedule during overflow flush
In terms of normal application usage, this list will always be empty.
And if an application does overflow a bit, it'll have a few entries.
However, nothing obviously prevents syzbot from running a test case
that generates a ton of overflow entries, and then flushing them can
take quite a while.
Check for needing to reschedule while flushing, and drop our locks and
do so if necessary. There's no state to maintain here as overflows
always prune from head-of-list, hence it's fine to drop and reacquire
the locks at the end of the loop.
In the Linux kernel, the following vulnerability has been resolved:
i3c: master: cdns: Fix use after free vulnerability in cdns_i3c_master Driver Due to Race Condition
In the cdns_i3c_master_probe function, &master->hj_work is bound with
cdns_i3c_master_hj. And cdns_i3c_master_interrupt can call
cnds_i3c_master_demux_ibis function to start the work.
If we remove the module which will call cdns_i3c_master_remove to
make cleanup, it will free master->base through i3c_master_unregister
while the work mentioned above will be used. The sequence of operations
that may lead to a UAF bug is as follows:
CPU0 CPU1
| cdns_i3c_master_hj
cdns_i3c_master_remove |
i3c_master_unregister(&master->base) |
device_unregister(&master->dev) |
device_release |
//free master->base |
| i3c_master_do_daa(&master->base)
| //use master->base
Fix it by ensuring that the work is canceled before proceeding with
the cleanup in cdns_i3c_master_remove.
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rtrs-srv: Avoid null pointer deref during path establishment
For RTRS path establishment, RTRS client initiates and completes con_num
of connections. After establishing all its connections, the information
is exchanged between the client and server through the info_req message.
During this exchange, it is essential that all connections have been
established, and the state of the RTRS srv path is CONNECTED.
So add these sanity checks, to make sure we detect and abort process in
error scenarios to avoid null pointer deref.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Prevent tail call between progs attached to different hooks
bpf progs can be attached to kernel functions, and the attached functions
can take different parameters or return different return values. If
prog attached to one kernel function tail calls prog attached to another
kernel function, the ctx access or return value verification could be
bypassed.
For example, if prog1 is attached to func1 which takes only 1 parameter
and prog2 is attached to func2 which takes two parameters. Since verifier
assumes the bpf ctx passed to prog2 is constructed based on func2's
prototype, verifier allows prog2 to access the second parameter from
the bpf ctx passed to it. The problem is that verifier does not prevent
prog1 from passing its bpf ctx to prog2 via tail call. In this case,
the bpf ctx passed to prog2 is constructed from func1 instead of func2,
that is, the assumption for ctx access verification is bypassed.
Another example, if BPF LSM prog1 is attached to hook file_alloc_security,
and BPF LSM prog2 is attached to hook bpf_lsm_audit_rule_known. Verifier
knows the return value rules for these two hooks, e.g. it is legal for
bpf_lsm_audit_rule_known to return positive number 1, and it is illegal
for file_alloc_security to return positive number. So verifier allows
prog2 to return positive number 1, but does not allow prog1 to return
positive number. The problem is that verifier does not prevent prog1
from calling prog2 via tail call. In this case, prog2's return value 1
will be used as the return value for prog1's hook file_alloc_security.
That is, the return value rule is bypassed.
This patch adds restriction for tail call to prevent such bypasses.
In the Linux kernel, the following vulnerability has been resolved:
zram: free secondary algorithms names
We need to kfree() secondary algorithms names when reset zram device that
had multi-streams, otherwise we leak memory.
[senozhatsky@chromium.org: kfree(NULL) is legal]
In the Linux kernel, the following vulnerability has been resolved:
ntfs3: Change to non-blocking allocation in ntfs_d_hash
d_hash is done while under "rcu-walk" and should not sleep.
__get_name() allocates using GFP_KERNEL, having the possibility
to sleep when under memory pressure. Change the allocation to
GFP_NOWAIT.
In the Linux kernel, the following vulnerability has been resolved:
igb: Do not bring the device up after non-fatal error
Commit 004d25060c78 ("igb: Fix igb_down hung on surprise removal")
changed igb_io_error_detected() to ignore non-fatal pcie errors in order
to avoid hung task that can happen when igb_down() is called multiple
times. This caused an issue when processing transient non-fatal errors.
igb_io_resume(), which is called after igb_io_error_detected(), assumes
that device is brought down by igb_io_error_detected() if the interface
is up. This resulted in panic with stacktrace below.
[ T3256] igb 0000:09:00.0 haeth0: igb: haeth0 NIC Link is Down
[ T292] pcieport 0000:00:1c.5: AER: Uncorrected (Non-Fatal) error received: 0000:09:00.0
[ T292] igb 0000:09:00.0: PCIe Bus Error: severity=Uncorrected (Non-Fatal), type=Transaction Layer, (Requester ID)
[ T292] igb 0000:09:00.0: device [8086:1537] error status/mask=00004000/00000000
[ T292] igb 0000:09:00.0: [14] CmpltTO [ 200.105524,009][ T292] igb 0000:09:00.0: AER: TLP Header: 00000000 00000000 00000000 00000000
[ T292] pcieport 0000:00:1c.5: AER: broadcast error_detected message
[ T292] igb 0000:09:00.0: Non-correctable non-fatal error reported.
[ T292] pcieport 0000:00:1c.5: AER: broadcast mmio_enabled message
[ T292] pcieport 0000:00:1c.5: AER: broadcast resume message
[ T292] ------------[ cut here ]------------
[ T292] kernel BUG at net/core/dev.c:6539!
[ T292] invalid opcode: 0000 [#1] PREEMPT SMP
[ T292] RIP: 0010:napi_enable+0x37/0x40
[ T292] Call Trace:
[ T292] <TASK>
[ T292] ? die+0x33/0x90
[ T292] ? do_trap+0xdc/0x110
[ T292] ? napi_enable+0x37/0x40
[ T292] ? do_error_trap+0x70/0xb0
[ T292] ? napi_enable+0x37/0x40
[ T292] ? napi_enable+0x37/0x40
[ T292] ? exc_invalid_op+0x4e/0x70
[ T292] ? napi_enable+0x37/0x40
[ T292] ? asm_exc_invalid_op+0x16/0x20
[ T292] ? napi_enable+0x37/0x40
[ T292] igb_up+0x41/0x150
[ T292] igb_io_resume+0x25/0x70
[ T292] report_resume+0x54/0x70
[ T292] ? report_frozen_detected+0x20/0x20
[ T292] pci_walk_bus+0x6c/0x90
[ T292] ? aer_print_port_info+0xa0/0xa0
[ T292] pcie_do_recovery+0x22f/0x380
[ T292] aer_process_err_devices+0x110/0x160
[ T292] aer_isr+0x1c1/0x1e0
[ T292] ? disable_irq_nosync+0x10/0x10
[ T292] irq_thread_fn+0x1a/0x60
[ T292] irq_thread+0xe3/0x1a0
[ T292] ? irq_set_affinity_notifier+0x120/0x120
[ T292] ? irq_affinity_notify+0x100/0x100
[ T292] kthread+0xe2/0x110
[ T292] ? kthread_complete_and_exit+0x20/0x20
[ T292] ret_from_fork+0x2d/0x50
[ T292] ? kthread_complete_and_exit+0x20/0x20
[ T292] ret_from_fork_asm+0x11/0x20
[ T292] </TASK>
To fix this issue igb_io_resume() checks if the interface is running and
the device is not down this means igb_io_error_detected() did not bring
the device down and there is no need to bring it up.
In the Linux kernel, the following vulnerability has been resolved:
i40e: Fix macvlan leak by synchronizing access to mac_filter_hash
This patch addresses a macvlan leak issue in the i40e driver caused by
concurrent access to vsi->mac_filter_hash. The leak occurs when multiple
threads attempt to modify the mac_filter_hash simultaneously, leading to
inconsistent state and potential memory leaks.
To fix this, we now wrap the calls to i40e_del_mac_filter() and zeroing
vf->default_lan_addr.addr with spin_lock/unlock_bh(&vsi->mac_filter_hash_lock),
ensuring atomic operations and preventing concurrent access.
Additionally, we add lockdep_assert_held(&vsi->mac_filter_hash_lock) in
i40e_add_mac_filter() to help catch similar issues in the future.
Reproduction steps:
1. Spawn VFs and configure port vlan on them.
2. Trigger concurrent macvlan operations (e.g., adding and deleting
portvlan and/or mac filters).
3. Observe the potential memory leak and inconsistent state in the
mac_filter_hash.
This synchronization ensures the integrity of the mac_filter_hash and prevents
the described leak.
In the Linux kernel, the following vulnerability has been resolved:
ice: Fix increasing MSI-X on VF
Increasing MSI-X value on a VF leads to invalid memory operations. This
is caused by not reallocating some arrays.
Reproducer:
modprobe ice
echo 0 > /sys/bus/pci/devices/$PF_PCI/sriov_drivers_autoprobe
echo 1 > /sys/bus/pci/devices/$PF_PCI/sriov_numvfs
echo 17 > /sys/bus/pci/devices/$VF0_PCI/sriov_vf_msix_count
Default MSI-X is 16, so 17 and above triggers this issue.
KASAN reports:
BUG: KASAN: slab-out-of-bounds in ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
Read of size 8 at addr ffff8888b937d180 by task bash/28433
(...)
Call Trace:
(...)
? ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
kasan_report+0xed/0x120
? ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
ice_vsi_alloc_ring_stats+0x38d/0x4b0 [ice]
ice_vsi_cfg_def+0x3360/0x4770 [ice]
? mutex_unlock+0x83/0xd0
? __pfx_ice_vsi_cfg_def+0x10/0x10 [ice]
? __pfx_ice_remove_vsi_lkup_fltr+0x10/0x10 [ice]
ice_vsi_cfg+0x7f/0x3b0 [ice]
ice_vf_reconfig_vsi+0x114/0x210 [ice]
ice_sriov_set_msix_vec_count+0x3d0/0x960 [ice]
sriov_vf_msix_count_store+0x21c/0x300
(...)
Allocated by task 28201:
(...)
ice_vsi_cfg_def+0x1c8e/0x4770 [ice]
ice_vsi_cfg+0x7f/0x3b0 [ice]
ice_vsi_setup+0x179/0xa30 [ice]
ice_sriov_configure+0xcaa/0x1520 [ice]
sriov_numvfs_store+0x212/0x390
(...)
To fix it, use ice_vsi_rebuild() instead of ice_vf_reconfig_vsi(). This
causes the required arrays to be reallocated taking the new queue count
into account (ice_vsi_realloc_stat_arrays()). Set req_txq and req_rxq
before ice_vsi_rebuild(), so that realloc uses the newly set queue
count.
Additionally, ice_vsi_rebuild() does not remove VSI filters
(ice_fltr_remove_all()), so ice_vf_init_host_cfg() is no longer
necessary.
In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix possible badness in FREE_STATEID
When multiple FREE_STATEIDs are sent for the same delegation stateid,
it can lead to a possible either use-after-free or counter refcount
underflow errors.
In nfsd4_free_stateid() under the client lock we find a delegation
stateid, however the code drops the lock before calling nfs4_put_stid(),
that allows another FREE_STATE to find the stateid again. The first one
will proceed to then free the stateid which leads to either
use-after-free or decrementing already zeroed counter.