Security Vulnerabilities
- CVEs Published In October 2024
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/tests/sysfs-kunit.h: fix memory leak in damon_sysfs_test_add_targets()
The sysfs_target->regions allocated in damon_sysfs_regions_alloc() is not
freed in damon_sysfs_test_add_targets(), which cause the following memory
leak, free it to fix it.
unreferenced object 0xffffff80c2a8db80 (size 96):
comm "kunit_try_catch", pid 187, jiffies 4294894363
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 0):
[<0000000001e3714d>] kmemleak_alloc+0x34/0x40
[<000000008e6835c1>] __kmalloc_cache_noprof+0x26c/0x2f4
[<000000001286d9f8>] damon_sysfs_test_add_targets+0x1cc/0x738
[<0000000032ef8f77>] kunit_try_run_case+0x13c/0x3ac
[<00000000f3edea23>] kunit_generic_run_threadfn_adapter+0x80/0xec
[<00000000adf936cf>] kthread+0x2e8/0x374
[<0000000041bb1628>] ret_from_fork+0x10/0x20
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: apple: check devm_kasprintf() returned value
devm_kasprintf() can return a NULL pointer on failure but this returned
value is not checked. Fix this lack and check the returned value.
Found by code review.
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: stm32: check devm_kasprintf() returned value
devm_kasprintf() can return a NULL pointer on failure but this returned
value is not checked. Fix this lack and check the returned value.
Found by code review.
In the Linux kernel, the following vulnerability has been resolved:
pinctrl: nuvoton: fix a double free in ma35_pinctrl_dt_node_to_map_func()
'new_map' is allocated using devm_* which takes care of freeing the
allocated data on device removal, call to
.dt_free_map = pinconf_generic_dt_free_map
double frees the map as pinconf_generic_dt_free_map() calls
pinctrl_utils_free_map().
Fix this by using kcalloc() instead of auto-managed devm_kcalloc().
In the Linux kernel, the following vulnerability has been resolved:
x86/bugs: Use code segment selector for VERW operand
Robert Gill reported below #GP in 32-bit mode when dosemu software was
executing vm86() system call:
general protection fault: 0000 [#1] PREEMPT SMP
CPU: 4 PID: 4610 Comm: dosemu.bin Not tainted 6.6.21-gentoo-x86 #1
Hardware name: Dell Inc. PowerEdge 1950/0H723K, BIOS 2.7.0 10/30/2010
EIP: restore_all_switch_stack+0xbe/0xcf
EAX: 00000000 EBX: 00000000 ECX: 00000000 EDX: 00000000
ESI: 00000000 EDI: 00000000 EBP: 00000000 ESP: ff8affdc
DS: 0000 ES: 0000 FS: 0000 GS: 0033 SS: 0068 EFLAGS: 00010046
CR0: 80050033 CR2: 00c2101c CR3: 04b6d000 CR4: 000406d0
Call Trace:
show_regs+0x70/0x78
die_addr+0x29/0x70
exc_general_protection+0x13c/0x348
exc_bounds+0x98/0x98
handle_exception+0x14d/0x14d
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
exc_bounds+0x98/0x98
restore_all_switch_stack+0xbe/0xcf
This only happens in 32-bit mode when VERW based mitigations like MDS/RFDS
are enabled. This is because segment registers with an arbitrary user value
can result in #GP when executing VERW. Intel SDM vol. 2C documents the
following behavior for VERW instruction:
#GP(0) - If a memory operand effective address is outside the CS, DS, ES,
FS, or GS segment limit.
CLEAR_CPU_BUFFERS macro executes VERW instruction before returning to user
space. Use %cs selector to reference VERW operand. This ensures VERW will
not #GP for an arbitrary user %ds.
[ mingo: Fixed the SOB chain. ]
In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: Fix use-after-free in gsm_cleanup_mux
BUG: KASAN: slab-use-after-free in gsm_cleanup_mux+0x77b/0x7b0
drivers/tty/n_gsm.c:3160 [n_gsm]
Read of size 8 at addr ffff88815fe99c00 by task poc/3379
CPU: 0 UID: 0 PID: 3379 Comm: poc Not tainted 6.11.0+ #56
Hardware name: VMware, Inc. VMware Virtual Platform/440BX
Desktop Reference Platform, BIOS 6.00 11/12/2020
Call Trace:
<TASK>
gsm_cleanup_mux+0x77b/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm]
__pfx_gsm_cleanup_mux+0x10/0x10 drivers/tty/n_gsm.c:3124 [n_gsm]
__pfx_sched_clock_cpu+0x10/0x10 kernel/sched/clock.c:389
update_load_avg+0x1c1/0x27b0 kernel/sched/fair.c:4500
__pfx_min_vruntime_cb_rotate+0x10/0x10 kernel/sched/fair.c:846
__rb_insert_augmented+0x492/0xbf0 lib/rbtree.c:161
gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm]
_raw_spin_lock_irqsave+0x92/0xf0 arch/x86/include/asm/atomic.h:107
__pfx_gsmld_ioctl+0x10/0x10 drivers/tty/n_gsm.c:3822 [n_gsm]
ktime_get+0x5e/0x140 kernel/time/timekeeping.c:195
ldsem_down_read+0x94/0x4e0 arch/x86/include/asm/atomic64_64.h:79
__pfx_ldsem_down_read+0x10/0x10 drivers/tty/tty_ldsem.c:338
__pfx_do_vfs_ioctl+0x10/0x10 fs/ioctl.c:805
tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818
Allocated by task 65:
gsm_data_alloc.constprop.0+0x27/0x190 drivers/tty/n_gsm.c:926 [n_gsm]
gsm_send+0x2c/0x580 drivers/tty/n_gsm.c:819 [n_gsm]
gsm1_receive+0x547/0xad0 drivers/tty/n_gsm.c:3038 [n_gsm]
gsmld_receive_buf+0x176/0x280 drivers/tty/n_gsm.c:3609 [n_gsm]
tty_ldisc_receive_buf+0x101/0x1e0 drivers/tty/tty_buffer.c:391
tty_port_default_receive_buf+0x61/0xa0 drivers/tty/tty_port.c:39
flush_to_ldisc+0x1b0/0x750 drivers/tty/tty_buffer.c:445
process_scheduled_works+0x2b0/0x10d0 kernel/workqueue.c:3229
worker_thread+0x3dc/0x950 kernel/workqueue.c:3391
kthread+0x2a3/0x370 kernel/kthread.c:389
ret_from_fork+0x2d/0x70 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:257
Freed by task 3367:
kfree+0x126/0x420 mm/slub.c:4580
gsm_cleanup_mux+0x36c/0x7b0 drivers/tty/n_gsm.c:3160 [n_gsm]
gsmld_ioctl+0x395/0x1450 drivers/tty/n_gsm.c:3408 [n_gsm]
tty_ioctl+0x643/0x1100 drivers/tty/tty_io.c:2818
[Analysis]
gsm_msg on the tx_ctrl_list or tx_data_list of gsm_mux
can be freed by multi threads through ioctl,which leads
to the occurrence of uaf. Protect it by gsm tx lock.
In the Linux kernel, the following vulnerability has been resolved:
parport: Proper fix for array out-of-bounds access
The recent fix for array out-of-bounds accesses replaced sprintf()
calls blindly with snprintf(). However, since snprintf() returns the
would-be-printed size, not the actually output size, the length
calculation can still go over the given limit.
Use scnprintf() instead of snprintf(), which returns the actually
output letters, for addressing the potential out-of-bounds access
properly.
In the Linux kernel, the following vulnerability has been resolved:
xhci: tegra: fix checked USB2 port number
If USB virtualizatoin is enabled, USB2 ports are shared between all
Virtual Functions. The USB2 port number owned by an USB2 root hub in
a Virtual Function may be less than total USB2 phy number supported
by the Tegra XUSB controller.
Using total USB2 phy number as port number to check all PORTSC values
would cause invalid memory access.
[ 116.923438] Unable to handle kernel paging request at virtual address 006c622f7665642f
...
[ 117.213640] Call trace:
[ 117.216783] tegra_xusb_enter_elpg+0x23c/0x658
[ 117.222021] tegra_xusb_runtime_suspend+0x40/0x68
[ 117.227260] pm_generic_runtime_suspend+0x30/0x50
[ 117.232847] __rpm_callback+0x84/0x3c0
[ 117.237038] rpm_suspend+0x2dc/0x740
[ 117.241229] pm_runtime_work+0xa0/0xb8
[ 117.245769] process_scheduled_works+0x24c/0x478
[ 117.251007] worker_thread+0x23c/0x328
[ 117.255547] kthread+0x104/0x1b0
[ 117.259389] ret_from_fork+0x10/0x20
[ 117.263582] Code: 54000222 f9461ae8 f8747908 b4ffff48 (f9400100)
In the Linux kernel, the following vulnerability has been resolved:
vt: prevent kernel-infoleak in con_font_get()
font.data may not initialize all memory spaces depending on the implementation
of vc->vc_sw->con_font_get. This may cause info-leak, so to prevent this, it
is safest to modify it to initialize the allocated memory space to 0, and it
generally does not affect the overall performance of the system.
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: ISO: Fix multiple init when debugfs is disabled
If bt_debugfs is not created successfully, which happens if either
CONFIG_DEBUG_FS or CONFIG_DEBUG_FS_ALLOW_ALL is unset, then iso_init()
returns early and does not set iso_inited to true. This means that a
subsequent call to iso_init() will result in duplicate calls to
proto_register(), bt_sock_register(), etc.
With CONFIG_LIST_HARDENED and CONFIG_BUG_ON_DATA_CORRUPTION enabled, the
duplicate call to proto_register() triggers this BUG():
list_add double add: new=ffffffffc0b280d0, prev=ffffffffbab56250,
next=ffffffffc0b280d0.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:35!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 2 PID: 887 Comm: bluetoothd Not tainted 6.10.11-1-ao-desktop #1
RIP: 0010:__list_add_valid_or_report+0x9a/0xa0
...
__list_add_valid_or_report+0x9a/0xa0
proto_register+0x2b5/0x340
iso_init+0x23/0x150 [bluetooth]
set_iso_socket_func+0x68/0x1b0 [bluetooth]
kmem_cache_free+0x308/0x330
hci_sock_sendmsg+0x990/0x9e0 [bluetooth]
__sock_sendmsg+0x7b/0x80
sock_write_iter+0x9a/0x110
do_iter_readv_writev+0x11d/0x220
vfs_writev+0x180/0x3e0
do_writev+0xca/0x100
...
This change removes the early return. The check for iso_debugfs being
NULL was unnecessary, it is always NULL when iso_inited is false.