Security Vulnerabilities
- CVEs Published In October 2024
In the Linux kernel, the following vulnerability has been resolved:
lib/generic-radix-tree.c: Fix rare race in __genradix_ptr_alloc()
If we need to increase the tree depth, allocate a new node, and then
race with another thread that increased the tree depth before us, we'll
still have a preallocated node that might be used later.
If we then use that node for a new non-root node, it'll still have a
pointer to the old root instead of being zeroed - fix this by zeroing it
in the cmpxchg failure path.
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix state management in error path of log writing function
After commit a694291a6211 ("nilfs2: separate wait function from
nilfs_segctor_write") was applied, the log writing function
nilfs_segctor_do_construct() was able to issue I/O requests continuously
even if user data blocks were split into multiple logs across segments,
but two potential flaws were introduced in its error handling.
First, if nilfs_segctor_begin_construction() fails while creating the
second or subsequent logs, the log writing function returns without
calling nilfs_segctor_abort_construction(), so the writeback flag set on
pages/folios will remain uncleared. This causes page cache operations to
hang waiting for the writeback flag. For example,
truncate_inode_pages_final(), which is called via nilfs_evict_inode() when
an inode is evicted from memory, will hang.
Second, the NILFS_I_COLLECTED flag set on normal inodes remain uncleared.
As a result, if the next log write involves checkpoint creation, that's
fine, but if a partial log write is performed that does not, inodes with
NILFS_I_COLLECTED set are erroneously removed from the "sc_dirty_files"
list, and their data and b-tree blocks may not be written to the device,
corrupting the block mapping.
Fix these issues by uniformly calling nilfs_segctor_abort_construction()
on failure of each step in the loop in nilfs_segctor_do_construct(),
having it clean up logs and segment usages according to progress, and
correcting the conditions for calling nilfs_redirty_inodes() to ensure
that the NILFS_I_COLLECTED flag is cleared.
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: add bounds checking to ocfs2_xattr_find_entry()
Add a paranoia check to make sure it doesn't stray beyond valid memory
region containing ocfs2 xattr entries when scanning for a match. It will
prevent out-of-bound access in case of crafted images.
In the Linux kernel, the following vulnerability has been resolved:
USB: usbtmc: prevent kernel-usb-infoleak
The syzbot reported a kernel-usb-infoleak in usbtmc_write,
we need to clear the structure before filling fields.
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: pause TCM when the firmware is stopped
Not doing so will make us send a host command to the transport while the
firmware is not alive, which will trigger a WARNING.
bad state = 0
WARNING: CPU: 2 PID: 17434 at drivers/net/wireless/intel/iwlwifi/iwl-trans.c:115 iwl_trans_send_cmd+0x1cb/0x1e0 [iwlwifi]
RIP: 0010:iwl_trans_send_cmd+0x1cb/0x1e0 [iwlwifi]
Call Trace:
<TASK>
iwl_mvm_send_cmd+0x40/0xc0 [iwlmvm]
iwl_mvm_config_scan+0x198/0x260 [iwlmvm]
iwl_mvm_recalc_tcm+0x730/0x11d0 [iwlmvm]
iwl_mvm_tcm_work+0x1d/0x30 [iwlmvm]
process_one_work+0x29e/0x640
worker_thread+0x2df/0x690
? rescuer_thread+0x540/0x540
kthread+0x192/0x1e0
? set_kthread_struct+0x90/0x90
ret_from_fork+0x22/0x30
In ProgressĀ® TelerikĀ® Report Server versions prior to 2024 Q3 (10.2.24.806), a credential stuffing attack is possible through improper restriction of excessive login attempts.
Adobe Framemaker versions 2020.6, 2022.4 and earlier are affected by an Untrusted Search Path vulnerability that could lead to arbitrary code execution. An attacker could exploit this vulnerability by inserting a malicious path into the search directories, which the application could unknowingly execute. This could allow the attacker to execute arbitrary code in the context of the current user. Exploitation of this issue requires user interaction.
Adobe Framemaker versions 2020.6, 2022.4 and earlier are affected by an Unrestricted Upload of File with Dangerous Type vulnerability that could result in arbitrary code execution. An attacker could exploit this vulnerability by uploading a malicious file which can be automatically processed or executed by the system. Exploitation of this issue requires user interaction.
Adobe Framemaker versions 2020.6, 2022.4 and earlier are affected by an Integer Overflow or Wraparound vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.
Adobe Framemaker versions 2020.6, 2022.4 and earlier are affected by an Integer Underflow (Wrap or Wraparound) vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file.