Security Vulnerabilities
- CVEs Published In October 2024
In the Linux kernel, the following vulnerability has been resolved:
bpf: correctly handle malformed BPF_CORE_TYPE_ID_LOCAL relos
In case of malformed relocation record of kind BPF_CORE_TYPE_ID_LOCAL
referencing a non-existing BTF type, function bpf_core_calc_relo_insn
would cause a null pointer deference.
Fix this by adding a proper check upper in call stack, as malformed
relocation records could be passed from user space.
Simplest reproducer is a program:
r0 = 0
exit
With a single relocation record:
.insn_off = 0, /* patch first instruction */
.type_id = 100500, /* this type id does not exist */
.access_str_off = 6, /* offset of string "0" */
.kind = BPF_CORE_TYPE_ID_LOCAL,
See the link for original reproducer or next commit for a test case.
In the Linux kernel, the following vulnerability has been resolved:
tpm: Clean up TPM space after command failure
tpm_dev_transmit prepares the TPM space before attempting command
transmission. However if the command fails no rollback of this
preparation is done. This can result in transient handles being leaked
if the device is subsequently closed with no further commands performed.
Fix this by flushing the space in the event of command transmission
failure.
In the Linux kernel, the following vulnerability has been resolved:
scsi: elx: libefc: Fix potential use after free in efc_nport_vport_del()
The kref_put() function will call nport->release if the refcount drops to
zero. The nport->release release function is _efc_nport_free() which frees
"nport". But then we dereference "nport" on the next line which is a use
after free. Re-order these lines to avoid the use after free.
In the Linux kernel, the following vulnerability has been resolved:
padata: use integer wrap around to prevent deadlock on seq_nr overflow
When submitting more than 2^32 padata objects to padata_do_serial, the
current sorting implementation incorrectly sorts padata objects with
overflowed seq_nr, causing them to be placed before existing objects in
the reorder list. This leads to a deadlock in the serialization process
as padata_find_next cannot match padata->seq_nr and pd->processed
because the padata instance with overflowed seq_nr will be selected
next.
To fix this, we use an unsigned integer wrap around to correctly sort
padata objects in scenarios with integer overflow.
In the Linux kernel, the following vulnerability has been resolved:
f2fs: Require FMODE_WRITE for atomic write ioctls
The F2FS ioctls for starting and committing atomic writes check for
inode_owner_or_capable(), but this does not give LSMs like SELinux or
Landlock an opportunity to deny the write access - if the caller's FSUID
matches the inode's UID, inode_owner_or_capable() immediately returns true.
There are scenarios where LSMs want to deny a process the ability to write
particular files, even files that the FSUID of the process owns; but this
can currently partially be bypassed using atomic write ioctls in two ways:
- F2FS_IOC_START_ATOMIC_REPLACE + F2FS_IOC_COMMIT_ATOMIC_WRITE can
truncate an inode to size 0
- F2FS_IOC_START_ATOMIC_WRITE + F2FS_IOC_ABORT_ATOMIC_WRITE can revert
changes another process concurrently made to a file
Fix it by requiring FMODE_WRITE for these operations, just like for
F2FS_IOC_MOVE_RANGE. Since any legitimate caller should only be using these
ioctls when intending to write into the file, that seems unlikely to break
anything.
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race setting file private on concurrent lseek using same fd
When doing concurrent lseek(2) system calls against the same file
descriptor, using multiple threads belonging to the same process, we have
a short time window where a race happens and can result in a memory leak.
The race happens like this:
1) A program opens a file descriptor for a file and then spawns two
threads (with the pthreads library for example), lets call them
task A and task B;
2) Task A calls lseek with SEEK_DATA or SEEK_HOLE and ends up at
file.c:find_desired_extent() while holding a read lock on the inode;
3) At the start of find_desired_extent(), it extracts the file's
private_data pointer into a local variable named 'private', which has
a value of NULL;
4) Task B also calls lseek with SEEK_DATA or SEEK_HOLE, locks the inode
in shared mode and enters file.c:find_desired_extent(), where it also
extracts file->private_data into its local variable 'private', which
has a NULL value;
5) Because it saw a NULL file private, task A allocates a private
structure and assigns to the file structure;
6) Task B also saw a NULL file private so it also allocates its own file
private and then assigns it to the same file structure, since both
tasks are using the same file descriptor.
At this point we leak the private structure allocated by task A.
Besides the memory leak, there's also the detail that both tasks end up
using the same cached state record in the private structure (struct
btrfs_file_private::llseek_cached_state), which can result in a
use-after-free problem since one task can free it while the other is
still using it (only one task took a reference count on it). Also, sharing
the cached state is not a good idea since it could result in incorrect
results in the future - right now it should not be a problem because it
end ups being used only in extent-io-tree.c:count_range_bits() where we do
range validation before using the cached state.
Fix this by protecting the private assignment and check of a file while
holding the inode's spinlock and keep track of the task that allocated
the private, so that it's used only by that task in order to prevent
user-after-free issues with the cached state record as well as potentially
using it incorrectly in the future.
In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Block path traversal
Most firmware names are hardcoded strings, or are constructed from fairly
constrained format strings where the dynamic parts are just some hex
numbers or such.
However, there are a couple codepaths in the kernel where firmware file
names contain string components that are passed through from a device or
semi-privileged userspace; the ones I could find (not counting interfaces
that require root privileges) are:
- lpfc_sli4_request_firmware_update() seems to construct the firmware
filename from "ModelName", a string that was previously parsed out of
some descriptor ("Vital Product Data") in lpfc_fill_vpd()
- nfp_net_fw_find() seems to construct a firmware filename from a model
name coming from nfp_hwinfo_lookup(pf->hwinfo, "nffw.partno"), which I
think parses some descriptor that was read from the device.
(But this case likely isn't exploitable because the format string looks
like "netronome/nic_%s", and there shouldn't be any *folders* starting
with "netronome/nic_". The previous case was different because there,
the "%s" is *at the start* of the format string.)
- module_flash_fw_schedule() is reachable from the
ETHTOOL_MSG_MODULE_FW_FLASH_ACT netlink command, which is marked as
GENL_UNS_ADMIN_PERM (meaning CAP_NET_ADMIN inside a user namespace is
enough to pass the privilege check), and takes a userspace-provided
firmware name.
(But I think to reach this case, you need to have CAP_NET_ADMIN over a
network namespace that a special kind of ethernet device is mapped into,
so I think this is not a viable attack path in practice.)
Fix it by rejecting any firmware names containing ".." path components.
For what it's worth, I went looking and haven't found any USB device
drivers that use the firmware loader dangerously.
In the Linux kernel, the following vulnerability has been resolved:
KEYS: prevent NULL pointer dereference in find_asymmetric_key()
In find_asymmetric_key(), if all NULLs are passed in the id_{0,1,2}
arguments, the kernel will first emit WARN but then have an oops
because id_2 gets dereferenced anyway.
Add the missing id_2 check and move WARN_ON() to the final else branch
to avoid duplicate NULL checks.
Found by Linux Verification Center (linuxtesting.org) with Svace static
analysis tool.
In the Linux kernel, the following vulnerability has been resolved:
KVM: Use dedicated mutex to protect kvm_usage_count to avoid deadlock
Use a dedicated mutex to guard kvm_usage_count to fix a potential deadlock
on x86 due to a chain of locks and SRCU synchronizations. Translating the
below lockdep splat, CPU1 #6 will wait on CPU0 #1, CPU0 #8 will wait on
CPU2 #3, and CPU2 #7 will wait on CPU1 #4 (if there's a writer, due to the
fairness of r/w semaphores).
CPU0 CPU1 CPU2
1 lock(&kvm->slots_lock);
2 lock(&vcpu->mutex);
3 lock(&kvm->srcu);
4 lock(cpu_hotplug_lock);
5 lock(kvm_lock);
6 lock(&kvm->slots_lock);
7 lock(cpu_hotplug_lock);
8 sync(&kvm->srcu);
Note, there are likely more potential deadlocks in KVM x86, e.g. the same
pattern of taking cpu_hotplug_lock outside of kvm_lock likely exists with
__kvmclock_cpufreq_notifier():
cpuhp_cpufreq_online()
|
-> cpufreq_online()
|
-> cpufreq_gov_performance_limits()
|
-> __cpufreq_driver_target()
|
-> __target_index()
|
-> cpufreq_freq_transition_begin()
|
-> cpufreq_notify_transition()
|
-> ... __kvmclock_cpufreq_notifier()
But, actually triggering such deadlocks is beyond rare due to the
combination of dependencies and timings involved. E.g. the cpufreq
notifier is only used on older CPUs without a constant TSC, mucking with
the NX hugepage mitigation while VMs are running is very uncommon, and
doing so while also onlining/offlining a CPU (necessary to generate
contention on cpu_hotplug_lock) would be even more unusual.
The most robust solution to the general cpu_hotplug_lock issue is likely
to switch vm_list to be an RCU-protected list, e.g. so that x86's cpufreq
notifier doesn't to take kvm_lock. For now, settle for fixing the most
blatant deadlock, as switching to an RCU-protected list is a much more
involved change, but add a comment in locking.rst to call out that care
needs to be taken when walking holding kvm_lock and walking vm_list.
======================================================
WARNING: possible circular locking dependency detected
6.10.0-smp--c257535a0c9d-pip #330 Tainted: G S O
------------------------------------------------------
tee/35048 is trying to acquire lock:
ff6a80eced71e0a8 (&kvm->slots_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x179/0x1e0 [kvm]
but task is already holding lock:
ffffffffc07abb08 (kvm_lock){+.+.}-{3:3}, at: set_nx_huge_pages+0x14a/0x1e0 [kvm]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (kvm_lock){+.+.}-{3:3}:
__mutex_lock+0x6a/0xb40
mutex_lock_nested+0x1f/0x30
kvm_dev_ioctl+0x4fb/0xe50 [kvm]
__se_sys_ioctl+0x7b/0xd0
__x64_sys_ioctl+0x21/0x30
x64_sys_call+0x15d0/0x2e60
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #2 (cpu_hotplug_lock){++++}-{0:0}:
cpus_read_lock+0x2e/0xb0
static_key_slow_inc+0x16/0x30
kvm_lapic_set_base+0x6a/0x1c0 [kvm]
kvm_set_apic_base+0x8f/0xe0 [kvm]
kvm_set_msr_common+0x9ae/0xf80 [kvm]
vmx_set_msr+0xa54/0xbe0 [kvm_intel]
__kvm_set_msr+0xb6/0x1a0 [kvm]
kvm_arch_vcpu_ioctl+0xeca/0x10c0 [kvm]
kvm_vcpu_ioctl+0x485/0x5b0 [kvm]
__se_sys_ioctl+0x7b/0xd0
__x64_sys_ioctl+0x21/0x30
x64_sys_call+0x15d0/0x2e60
do_syscall_64+0x83/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
-> #1 (&kvm->srcu){.+.+}-{0:0}:
__synchronize_srcu+0x44/0x1a0
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
mm: call the security_mmap_file() LSM hook in remap_file_pages()
The remap_file_pages syscall handler calls do_mmap() directly, which
doesn't contain the LSM security check. And if the process has called
personality(READ_IMPLIES_EXEC) before and remap_file_pages() is called for
RW pages, this will actually result in remapping the pages to RWX,
bypassing a W^X policy enforced by SELinux.
So we should check prot by security_mmap_file LSM hook in the
remap_file_pages syscall handler before do_mmap() is called. Otherwise, it
potentially permits an attacker to bypass a W^X policy enforced by
SELinux.
The bypass is similar to CVE-2016-10044, which bypass the same thing via
AIO and can be found in [1].
The PoC:
$ cat > test.c
int main(void) {
size_t pagesz = sysconf(_SC_PAGE_SIZE);
int mfd = syscall(SYS_memfd_create, "test", 0);
const char *buf = mmap(NULL, 4 * pagesz, PROT_READ | PROT_WRITE,
MAP_SHARED, mfd, 0);
unsigned int old = syscall(SYS_personality, 0xffffffff);
syscall(SYS_personality, READ_IMPLIES_EXEC | old);
syscall(SYS_remap_file_pages, buf, pagesz, 0, 2, 0);
syscall(SYS_personality, old);
// show the RWX page exists even if W^X policy is enforced
int fd = open("/proc/self/maps", O_RDONLY);
unsigned char buf2[1024];
while (1) {
int ret = read(fd, buf2, 1024);
if (ret <= 0) break;
write(1, buf2, ret);
}
close(fd);
}
$ gcc test.c -o test
$ ./test | grep rwx
7f1836c34000-7f1836c35000 rwxs 00002000 00:01 2050 /memfd:test (deleted)
[PM: subject line tweaks]