Vulnerabilities
Vulnerable Software
Security Vulnerabilities - CVEs Published In September 2024
In the Linux kernel, the following vulnerability has been resolved: btrfs: replace BUG_ON() with error handling at update_ref_for_cow() Instead of a BUG_ON() just return an error, log an error message and abort the transaction in case we find an extent buffer belonging to the relocation tree that doesn't have the full backref flag set. This is unexpected and should never happen (save for bugs or a potential bad memory).
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: btrfs: handle errors from btrfs_dec_ref() properly In walk_up_proc() we BUG_ON(ret) from btrfs_dec_ref(). This is incorrect, we have proper error handling here, return the error.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: bpf: Remove tst_run from lwt_seg6local_prog_ops. The syzbot reported that the lwt_seg6 related BPF ops can be invoked via bpf_test_run() without without entering input_action_end_bpf() first. Martin KaFai Lau said that self test for BPF_PROG_TYPE_LWT_SEG6LOCAL probably didn't work since it was introduced in commit 04d4b274e2a ("ipv6: sr: Add seg6local action End.BPF"). The reason is that the per-CPU variable seg6_bpf_srh_states::srh is never assigned in the self test case but each BPF function expects it. Remove test_run for BPF_PROG_TYPE_LWT_SEG6LOCAL.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: wifi: mwifiex: Do not return unused priv in mwifiex_get_priv_by_id() mwifiex_get_priv_by_id() returns the priv pointer corresponding to the bss_num and bss_type, but without checking if the priv is actually currently in use. Unused priv pointers do not have a wiphy attached to them which can lead to NULL pointer dereferences further down the callstack. Fix this by returning only used priv pointers which have priv->bss_mode set to something else than NL80211_IFTYPE_UNSPECIFIED. Said NULL pointer dereference happened when an Accesspoint was started with wpa_supplicant -i mlan0 with this config: network={ ssid="somessid" mode=2 frequency=2412 key_mgmt=WPA-PSK WPA-PSK-SHA256 proto=RSN group=CCMP pairwise=CCMP psk="12345678" } When waiting for the AP to be established, interrupting wpa_supplicant with <ctrl-c> and starting it again this happens: | Unable to handle kernel NULL pointer dereference at virtual address 0000000000000140 | Mem abort info: | ESR = 0x0000000096000004 | EC = 0x25: DABT (current EL), IL = 32 bits | SET = 0, FnV = 0 | EA = 0, S1PTW = 0 | FSC = 0x04: level 0 translation fault | Data abort info: | ISV = 0, ISS = 0x00000004, ISS2 = 0x00000000 | CM = 0, WnR = 0, TnD = 0, TagAccess = 0 | GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 | user pgtable: 4k pages, 48-bit VAs, pgdp=0000000046d96000 | [0000000000000140] pgd=0000000000000000, p4d=0000000000000000 | Internal error: Oops: 0000000096000004 [#1] PREEMPT SMP | Modules linked in: caam_jr caamhash_desc spidev caamalg_desc crypto_engine authenc libdes mwifiex_sdio +mwifiex crct10dif_ce cdc_acm onboard_usb_hub fsl_imx8_ddr_perf imx8m_ddrc rtc_ds1307 lm75 rtc_snvs +imx_sdma caam imx8mm_thermal spi_imx error imx_cpufreq_dt fuse ip_tables x_tables ipv6 | CPU: 0 PID: 8 Comm: kworker/0:1 Not tainted 6.9.0-00007-g937242013fce-dirty #18 | Hardware name: somemachine (DT) | Workqueue: events sdio_irq_work | pstate: 00000005 (nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--) | pc : mwifiex_get_cfp+0xd8/0x15c [mwifiex] | lr : mwifiex_get_cfp+0x34/0x15c [mwifiex] | sp : ffff8000818b3a70 | x29: ffff8000818b3a70 x28: ffff000006bfd8a5 x27: 0000000000000004 | x26: 000000000000002c x25: 0000000000001511 x24: 0000000002e86bc9 | x23: ffff000006bfd996 x22: 0000000000000004 x21: ffff000007bec000 | x20: 000000000000002c x19: 0000000000000000 x18: 0000000000000000 | x17: 000000040044ffff x16: 00500072b5503510 x15: ccc283740681e517 | x14: 0201000101006d15 x13: 0000000002e8ff43 x12: 002c01000000ffb1 | x11: 0100000000000000 x10: 02e8ff43002c0100 x9 : 0000ffb100100157 | x8 : ffff000003d20000 x7 : 00000000000002f1 x6 : 00000000ffffe124 | x5 : 0000000000000001 x4 : 0000000000000003 x3 : 0000000000000000 | x2 : 0000000000000000 x1 : 0001000000011001 x0 : 0000000000000000 | Call trace: | mwifiex_get_cfp+0xd8/0x15c [mwifiex] | mwifiex_parse_single_response_buf+0x1d0/0x504 [mwifiex] | mwifiex_handle_event_ext_scan_report+0x19c/0x2f8 [mwifiex] | mwifiex_process_sta_event+0x298/0xf0c [mwifiex] | mwifiex_process_event+0x110/0x238 [mwifiex] | mwifiex_main_process+0x428/0xa44 [mwifiex] | mwifiex_sdio_interrupt+0x64/0x12c [mwifiex_sdio] | process_sdio_pending_irqs+0x64/0x1b8 | sdio_irq_work+0x4c/0x7c | process_one_work+0x148/0x2a0 | worker_thread+0x2fc/0x40c | kthread+0x110/0x114 | ret_from_fork+0x10/0x20 | Code: a94153f3 a8c37bfd d50323bf d65f03c0 (f940a000) | ---[ end trace 0000000000000000 ]---
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: hwmon: (adc128d818) Fix underflows seen when writing limit attributes DIV_ROUND_CLOSEST() after kstrtol() results in an underflow if a large negative number such as -9223372036854775808 is provided by the user. Fix it by reordering clamp_val() and DIV_ROUND_CLOSEST() operations.
CVSS Score
7.8
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: wifi: rtw88: usb: schedule rx work after everything is set up Right now it's possible to hit NULL pointer dereference in rtw_rx_fill_rx_status on hw object and/or its fields because initialization routine can start getting USB replies before rtw_dev is fully setup. The stack trace looks like this: rtw_rx_fill_rx_status rtw8821c_query_rx_desc rtw_usb_rx_handler ... queue_work rtw_usb_read_port_complete ... usb_submit_urb rtw_usb_rx_resubmit rtw_usb_init_rx rtw_usb_probe So while we do the async stuff rtw_usb_probe continues and calls rtw_register_hw, which does all kinds of initialization (e.g. via ieee80211_register_hw) that rtw_rx_fill_rx_status relies on. Fix this by moving the first usb_submit_urb after everything is set up. For me, this bug manifested as: [ 8.893177] rtw_8821cu 1-1:1.2: band wrong, packet dropped [ 8.910904] rtw_8821cu 1-1:1.2: hw->conf.chandef.chan NULL in rtw_rx_fill_rx_status because I'm using Larry's backport of rtw88 driver with the NULL checks in rtw_rx_fill_rx_status.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: pci/hotplug/pnv_php: Fix hotplug driver crash on Powernv The hotplug driver for powerpc (pci/hotplug/pnv_php.c) causes a kernel crash when we try to hot-unplug/disable the PCIe switch/bridge from the PHB. The crash occurs because although the MSI data structure has been released during disable/hot-unplug path and it has been assigned with NULL, still during unregistration the code was again trying to explicitly disable the MSI which causes the NULL pointer dereference and kernel crash. The patch fixes the check during unregistration path to prevent invoking pci_disable_msi/msix() since its data structure is already freed.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: xen: privcmd: Fix possible access to a freed kirqfd instance Nothing prevents simultaneous ioctl calls to privcmd_irqfd_assign() and privcmd_irqfd_deassign(). If that happens, it is possible that a kirqfd created and added to the irqfds_list by privcmd_irqfd_assign() may get removed by another thread executing privcmd_irqfd_deassign(), while the former is still using it after dropping the locks. This can lead to a situation where an already freed kirqfd instance may be accessed and cause kernel oops. Use SRCU locking to prevent the same, as is done for the KVM implementation for irqfds.
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: fou: Fix null-ptr-deref in GRO. We observed a null-ptr-deref in fou_gro_receive() while shutting down a host. [0] The NULL pointer is sk->sk_user_data, and the offset 8 is of protocol in struct fou. When fou_release() is called due to netns dismantle or explicit tunnel teardown, udp_tunnel_sock_release() sets NULL to sk->sk_user_data. Then, the tunnel socket is destroyed after a single RCU grace period. So, in-flight udp4_gro_receive() could find the socket and execute the FOU GRO handler, where sk->sk_user_data could be NULL. Let's use rcu_dereference_sk_user_data() in fou_from_sock() and add NULL checks in FOU GRO handlers. [0]: BUG: kernel NULL pointer dereference, address: 0000000000000008 PF: supervisor read access in kernel mode PF: error_code(0x0000) - not-present page PGD 80000001032f4067 P4D 80000001032f4067 PUD 103240067 PMD 0 SMP PTI CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.10.216-204.855.amzn2.x86_64 #1 Hardware name: Amazon EC2 c5.large/, BIOS 1.0 10/16/2017 RIP: 0010:fou_gro_receive (net/ipv4/fou.c:233) [fou] Code: 41 5f c3 cc cc cc cc e8 e7 2e 69 f4 0f 1f 80 00 00 00 00 0f 1f 44 00 00 49 89 f8 41 54 48 89 f7 48 89 d6 49 8b 80 88 02 00 00 <0f> b6 48 08 0f b7 42 4a 66 25 fd fd 80 cc 02 66 89 42 4a 0f b6 42 RSP: 0018:ffffa330c0003d08 EFLAGS: 00010297 RAX: 0000000000000000 RBX: ffff93d9e3a6b900 RCX: 0000000000000010 RDX: ffff93d9e3a6b900 RSI: ffff93d9e3a6b900 RDI: ffff93dac2e24d08 RBP: ffff93d9e3a6b900 R08: ffff93dacbce6400 R09: 0000000000000002 R10: 0000000000000000 R11: ffffffffb5f369b0 R12: ffff93dacbce6400 R13: ffff93dac2e24d08 R14: 0000000000000000 R15: ffffffffb4edd1c0 FS: 0000000000000000(0000) GS:ffff93daee800000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000102140001 CR4: 00000000007706f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: <IRQ> ? show_trace_log_lvl (arch/x86/kernel/dumpstack.c:259) ? __die_body.cold (arch/x86/kernel/dumpstack.c:478 arch/x86/kernel/dumpstack.c:420) ? no_context (arch/x86/mm/fault.c:752) ? exc_page_fault (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 arch/x86/mm/fault.c:1435 arch/x86/mm/fault.c:1483) ? asm_exc_page_fault (arch/x86/include/asm/idtentry.h:571) ? fou_gro_receive (net/ipv4/fou.c:233) [fou] udp_gro_receive (include/linux/netdevice.h:2552 net/ipv4/udp_offload.c:559) udp4_gro_receive (net/ipv4/udp_offload.c:604) inet_gro_receive (net/ipv4/af_inet.c:1549 (discriminator 7)) dev_gro_receive (net/core/dev.c:6035 (discriminator 4)) napi_gro_receive (net/core/dev.c:6170) ena_clean_rx_irq (drivers/amazon/net/ena/ena_netdev.c:1558) [ena] ena_io_poll (drivers/amazon/net/ena/ena_netdev.c:1742) [ena] napi_poll (net/core/dev.c:6847) net_rx_action (net/core/dev.c:6917) __do_softirq (arch/x86/include/asm/jump_label.h:25 include/linux/jump_label.h:200 include/trace/events/irq.h:142 kernel/softirq.c:299) asm_call_irq_on_stack (arch/x86/entry/entry_64.S:809) </IRQ> do_softirq_own_stack (arch/x86/include/asm/irq_stack.h:27 arch/x86/include/asm/irq_stack.h:77 arch/x86/kernel/irq_64.c:77) irq_exit_rcu (kernel/softirq.c:393 kernel/softirq.c:423 kernel/softirq.c:435) common_interrupt (arch/x86/kernel/irq.c:239) asm_common_interrupt (arch/x86/include/asm/idtentry.h:626) RIP: 0010:acpi_idle_do_entry (arch/x86/include/asm/irqflags.h:49 arch/x86/include/asm/irqflags.h:89 drivers/acpi/processor_idle.c:114 drivers/acpi/processor_idle.c:575) Code: 8b 15 d1 3c c4 02 ed c3 cc cc cc cc 65 48 8b 04 25 40 ef 01 00 48 8b 00 a8 08 75 eb 0f 1f 44 00 00 0f 00 2d d5 09 55 00 fb f4 <fa> c3 cc cc cc cc e9 be fc ff ff 66 66 2e 0f 1f 84 00 00 00 00 00 RSP: 0018:ffffffffb5603e58 EFLAGS: 00000246 RAX: 0000000000004000 RBX: ffff93dac0929c00 RCX: ffff93daee833900 RDX: ffff93daee800000 RSI: ffff93d ---truncated---
CVSS Score
5.5
EPSS Score
0.0
Published
2024-09-18
In the Linux kernel, the following vulnerability has been resolved: bpf: add check for invalid name in btf_name_valid_section() If the length of the name string is 1 and the value of name[0] is NULL byte, an OOB vulnerability occurs in btf_name_valid_section() and the return value is true, so the invalid name passes the check. To solve this, you need to check if the first position is NULL byte and if the first character is printable.
CVSS Score
7.1
EPSS Score
0.001
Published
2024-09-18


Contact Us

Shodan ® - All rights reserved