Security Vulnerabilities
- CVEs Published In August 2024
In the Linux kernel, the following vulnerability has been resolved:
ice: fix concurrent reset and removal of VFs
Commit c503e63200c6 ("ice: Stop processing VF messages during teardown")
introduced a driver state flag, ICE_VF_DEINIT_IN_PROGRESS, which is
intended to prevent some issues with concurrently handling messages from
VFs while tearing down the VFs.
This change was motivated by crashes caused while tearing down and
bringing up VFs in rapid succession.
It turns out that the fix actually introduces issues with the VF driver
caused because the PF no longer responds to any messages sent by the VF
during its .remove routine. This results in the VF potentially removing
its DMA memory before the PF has shut down the device queues.
Additionally, the fix doesn't actually resolve concurrency issues within
the ice driver. It is possible for a VF to initiate a reset just prior
to the ice driver removing VFs. This can result in the remove task
concurrently operating while the VF is being reset. This results in
similar memory corruption and panics purportedly fixed by that commit.
Fix this concurrency at its root by protecting both the reset and
removal flows using the existing VF cfg_lock. This ensures that we
cannot remove the VF while any outstanding critical tasks such as a
virtchnl message or a reset are occurring.
This locking change also fixes the root cause originally fixed by commit
c503e63200c6 ("ice: Stop processing VF messages during teardown"), so we
can simply revert it.
Note that I kept these two changes together because simply reverting the
original commit alone would leave the driver vulnerable to worse race
conditions.
In the Linux kernel, the following vulnerability has been resolved:
configfs: fix a race in configfs_{,un}register_subsystem()
When configfs_register_subsystem() or configfs_unregister_subsystem()
is executing link_group() or unlink_group(),
it is possible that two processes add or delete list concurrently.
Some unfortunate interleavings of them can cause kernel panic.
One of cases is:
A --> B --> C --> D
A <-- B <-- C <-- D
delete list_head *B | delete list_head *C
--------------------------------|-----------------------------------
configfs_unregister_subsystem | configfs_unregister_subsystem
unlink_group | unlink_group
unlink_obj | unlink_obj
list_del_init | list_del_init
__list_del_entry | __list_del_entry
__list_del | __list_del
// next == C |
next->prev = prev |
| next->prev = prev
prev->next = next |
| // prev == B
| prev->next = next
Fix this by adding mutex when calling link_group() or unlink_group(),
but parent configfs_subsystem is NULL when config_item is root.
So I create a mutex configfs_subsystem_mutex.
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: DR, Fix slab-out-of-bounds in mlx5_cmd_dr_create_fte
When adding a rule with 32 destinations, we hit the following out-of-band
access issue:
BUG: KASAN: slab-out-of-bounds in mlx5_cmd_dr_create_fte+0x18ee/0x1e70
This patch fixes the issue by both increasing the allocated buffers to
accommodate for the needed actions and by checking the number of actions
to prevent this issue when a rule with too many actions is provided.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: fix memory leak during stateful obj update
stateful objects can be updated from the control plane.
The transaction logic allocates a temporary object for this purpose.
The ->init function was called for this object, so plain kfree() leaks
resources. We must call ->destroy function of the object.
nft_obj_destroy does this, but it also decrements the module refcount,
but the update path doesn't increment it.
To avoid special-casing the update object release, do module_get for
the update case too and release it via nft_obj_destroy().
In the Linux kernel, the following vulnerability has been resolved:
nfp: flower: Fix a potential leak in nfp_tunnel_add_shared_mac()
ida_simple_get() returns an id between min (0) and max (NFP_MAX_MAC_INDEX)
inclusive.
So NFP_MAX_MAC_INDEX (0xff) is a valid id.
In order for the error handling path to work correctly, the 'invalid'
value for 'ida_idx' should not be in the 0..NFP_MAX_MAC_INDEX range,
inclusive.
So set it to -1.
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: unregister flowtable hooks on netns exit
Unregister flowtable hooks before they are releases via
nf_tables_flowtable_destroy() otherwise hook core reports UAF.
BUG: KASAN: use-after-free in nf_hook_entries_grow+0x5a7/0x700 net/netfilter/core.c:142 net/netfilter/core.c:142
Read of size 4 at addr ffff8880736f7438 by task syz-executor579/3666
CPU: 0 PID: 3666 Comm: syz-executor579 Not tainted 5.16.0-rc5-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
__dump_stack lib/dump_stack.c:88 [inline] lib/dump_stack.c:106
dump_stack_lvl+0x1dc/0x2d8 lib/dump_stack.c:106 lib/dump_stack.c:106
print_address_description+0x65/0x380 mm/kasan/report.c:247 mm/kasan/report.c:247
__kasan_report mm/kasan/report.c:433 [inline]
__kasan_report mm/kasan/report.c:433 [inline] mm/kasan/report.c:450
kasan_report+0x19a/0x1f0 mm/kasan/report.c:450 mm/kasan/report.c:450
nf_hook_entries_grow+0x5a7/0x700 net/netfilter/core.c:142 net/netfilter/core.c:142
__nf_register_net_hook+0x27e/0x8d0 net/netfilter/core.c:429 net/netfilter/core.c:429
nf_register_net_hook+0xaa/0x180 net/netfilter/core.c:571 net/netfilter/core.c:571
nft_register_flowtable_net_hooks+0x3c5/0x730 net/netfilter/nf_tables_api.c:7232 net/netfilter/nf_tables_api.c:7232
nf_tables_newflowtable+0x2022/0x2cf0 net/netfilter/nf_tables_api.c:7430 net/netfilter/nf_tables_api.c:7430
nfnetlink_rcv_batch net/netfilter/nfnetlink.c:513 [inline]
nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:634 [inline]
nfnetlink_rcv_batch net/netfilter/nfnetlink.c:513 [inline] net/netfilter/nfnetlink.c:652
nfnetlink_rcv_skb_batch net/netfilter/nfnetlink.c:634 [inline] net/netfilter/nfnetlink.c:652
nfnetlink_rcv+0x10e6/0x2550 net/netfilter/nfnetlink.c:652 net/netfilter/nfnetlink.c:652
__nft_release_hook() calls nft_unregister_flowtable_net_hooks() which
only unregisters the hooks, then after RCU grace period, it is
guaranteed that no packets add new entries to the flowtable (no flow
offload rules and flowtable hooks are reachable from packet path), so it
is safe to call nf_flow_table_free() which cleans up the remaining
entries from the flowtable (both software and hardware) and it unbinds
the flow_block.
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: rndis: add spinlock for rndis response list
There's no lock for rndis response list. It could cause list corruption
if there're two different list_add at the same time like below.
It's better to add in rndis_add_response / rndis_free_response
/ rndis_get_next_response to prevent any race condition on response list.
[ 361.894299] [1: irq/191-dwc3:16979] list_add corruption.
next->prev should be prev (ffffff80651764d0),
but was ffffff883dc36f80. (next=ffffff80651764d0).
[ 361.904380] [1: irq/191-dwc3:16979] Call trace:
[ 361.904391] [1: irq/191-dwc3:16979] __list_add_valid+0x74/0x90
[ 361.904401] [1: irq/191-dwc3:16979] rndis_msg_parser+0x168/0x8c0
[ 361.904409] [1: irq/191-dwc3:16979] rndis_command_complete+0x24/0x84
[ 361.904417] [1: irq/191-dwc3:16979] usb_gadget_giveback_request+0x20/0xe4
[ 361.904426] [1: irq/191-dwc3:16979] dwc3_gadget_giveback+0x44/0x60
[ 361.904434] [1: irq/191-dwc3:16979] dwc3_ep0_complete_data+0x1e8/0x3a0
[ 361.904442] [1: irq/191-dwc3:16979] dwc3_ep0_interrupt+0x29c/0x3dc
[ 361.904450] [1: irq/191-dwc3:16979] dwc3_process_event_entry+0x78/0x6cc
[ 361.904457] [1: irq/191-dwc3:16979] dwc3_process_event_buf+0xa0/0x1ec
[ 361.904465] [1: irq/191-dwc3:16979] dwc3_thread_interrupt+0x34/0x5c
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: tsc2046: fix memory corruption by preventing array overflow
On one side we have indio_dev->num_channels includes all physical channels +
timestamp channel. On other side we have an array allocated only for
physical channels. So, fix memory corruption by ARRAY_SIZE() instead of
num_channels variable.
Note the first case is a cleanup rather than a fix as the software
timestamp channel bit in active_scanmask is never set by the IIO core.
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: men_z188_adc: Fix a resource leak in an error handling path
If iio_device_register() fails, a previous ioremap() is left unbalanced.
Update the error handling path and add the missing iounmap() call, as
already done in the remove function.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix crash due to out of bounds access into reg2btf_ids.
When commit e6ac2450d6de ("bpf: Support bpf program calling kernel function") added
kfunc support, it defined reg2btf_ids as a cheap way to translate the verifier
reg type to the appropriate btf_vmlinux BTF ID, however
commit c25b2ae13603 ("bpf: Replace PTR_TO_XXX_OR_NULL with PTR_TO_XXX | PTR_MAYBE_NULL")
moved the __BPF_REG_TYPE_MAX from the last member of bpf_reg_type enum to after
the base register types, and defined other variants using type flag
composition. However, now, the direct usage of reg->type to index into
reg2btf_ids may no longer fall into __BPF_REG_TYPE_MAX range, and hence lead to
out of bounds access and kernel crash on dereference of bad pointer.