Security Vulnerabilities
- CVEs Published In August 2024
In the Linux kernel, the following vulnerability has been resolved:
Revert "ALSA: firewire-lib: operate for period elapse event in process context"
Commit 7ba5ca32fe6e ("ALSA: firewire-lib: operate for period elapse event
in process context") removed the process context workqueue from
amdtp_domain_stream_pcm_pointer() and update_pcm_pointers() to remove
its overhead.
With RME Fireface 800, this lead to a regression since
Kernels 5.14.0, causing an AB/BA deadlock competition for the
substream lock with eventual system freeze under ALSA operation:
thread 0:
* (lock A) acquire substream lock by
snd_pcm_stream_lock_irq() in
snd_pcm_status64()
* (lock B) wait for tasklet to finish by calling
tasklet_unlock_spin_wait() in
tasklet_disable_in_atomic() in
ohci_flush_iso_completions() of ohci.c
thread 1:
* (lock B) enter tasklet
* (lock A) attempt to acquire substream lock,
waiting for it to be released:
snd_pcm_stream_lock_irqsave() in
snd_pcm_period_elapsed() in
update_pcm_pointers() in
process_ctx_payloads() in
process_rx_packets() of amdtp-stream.c
? tasklet_unlock_spin_wait
</NMI>
<TASK>
ohci_flush_iso_completions firewire_ohci
amdtp_domain_stream_pcm_pointer snd_firewire_lib
snd_pcm_update_hw_ptr0 snd_pcm
snd_pcm_status64 snd_pcm
? native_queued_spin_lock_slowpath
</NMI>
<IRQ>
_raw_spin_lock_irqsave
snd_pcm_period_elapsed snd_pcm
process_rx_packets snd_firewire_lib
irq_target_callback snd_firewire_lib
handle_it_packet firewire_ohci
context_tasklet firewire_ohci
Restore the process context work queue to prevent deadlock
AB/BA deadlock competition for ALSA substream lock of
snd_pcm_stream_lock_irq() in snd_pcm_status64()
and snd_pcm_stream_lock_irqsave() in snd_pcm_period_elapsed().
revert commit 7ba5ca32fe6e ("ALSA: firewire-lib: operate for period
elapse event in process context")
Replace inline description to prevent future deadlock.
In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix error code in drm_client_buffer_vmap_local()
This function accidentally returns zero/success on the failure path.
It leads to locking issues and an uninitialized *map_copy in the
caller.
In the Linux kernel, the following vulnerability has been resolved:
nvme-pci: add missing condition check for existence of mapped data
nvme_map_data() is called when request has physical segments, hence
the nvme_unmap_data() should have same condition to avoid dereference.
In the Linux kernel, the following vulnerability has been resolved:
iommu: sprd: Avoid NULL deref in sprd_iommu_hw_en
In sprd_iommu_cleanup() before calling function sprd_iommu_hw_en()
dom->sdev is equal to NULL, which leads to null dereference.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: TAS2781: Fix tasdev_load_calibrated_data()
This function has a reversed if statement so it's either a no-op or it
leads to a NULL dereference.
In the Linux kernel, the following vulnerability has been resolved:
spi: microchip-core: ensure TX and RX FIFOs are empty at start of a transfer
While transmitting with rx_len == 0, the RX FIFO is not going to be
emptied in the interrupt handler. A subsequent transfer could then
read crap from the previous transfer out of the RX FIFO into the
start RX buffer. The core provides a register that will empty the RX and
TX FIFOs, so do that before each transfer.
In the Linux kernel, the following vulnerability has been resolved:
mISDN: Fix a use after free in hfcmulti_tx()
Don't dereference *sp after calling dev_kfree_skb(*sp).
In the Linux kernel, the following vulnerability has been resolved:
apparmor: Fix null pointer deref when receiving skb during sock creation
The panic below is observed when receiving ICMP packets with secmark set
while an ICMP raw socket is being created. SK_CTX(sk)->label is updated
in apparmor_socket_post_create(), but the packet is delivered to the
socket before that, causing the null pointer dereference.
Drop the packet if label context is not set.
BUG: kernel NULL pointer dereference, address: 000000000000004c
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 407 Comm: a.out Not tainted 6.4.12-arch1-1 #1 3e6fa2753a2d75925c34ecb78e22e85a65d083df
Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 05/28/2020
RIP: 0010:aa_label_next_confined+0xb/0x40
Code: 00 00 48 89 ef e8 d5 25 0c 00 e9 66 ff ff ff 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 66 0f 1f 00 0f 1f 44 00 00 89 f0 <8b> 77 4c 39 c6 7e 1f 48 63 d0 48 8d 14 d7 eb 0b 83 c0 01 48 83 c2
RSP: 0018:ffffa92940003b08 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 000000000000000e
RDX: ffffa92940003be8 RSI: 0000000000000000 RDI: 0000000000000000
RBP: ffff8b57471e7800 R08: ffff8b574c642400 R09: 0000000000000002
R10: ffffffffbd820eeb R11: ffffffffbeb7ff00 R12: ffff8b574c642400
R13: 0000000000000001 R14: 0000000000000001 R15: 0000000000000000
FS: 00007fb092ea7640(0000) GS:ffff8b577bc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000000004c CR3: 00000001020f2005 CR4: 00000000007706f0
PKRU: 55555554
Call Trace:
<IRQ>
? __die+0x23/0x70
? page_fault_oops+0x171/0x4e0
? exc_page_fault+0x7f/0x180
? asm_exc_page_fault+0x26/0x30
? aa_label_next_confined+0xb/0x40
apparmor_secmark_check+0xec/0x330
security_sock_rcv_skb+0x35/0x50
sk_filter_trim_cap+0x47/0x250
sock_queue_rcv_skb_reason+0x20/0x60
raw_rcv+0x13c/0x210
raw_local_deliver+0x1f3/0x250
ip_protocol_deliver_rcu+0x4f/0x2f0
ip_local_deliver_finish+0x76/0xa0
__netif_receive_skb_one_core+0x89/0xa0
netif_receive_skb+0x119/0x170
? __netdev_alloc_skb+0x3d/0x140
vmxnet3_rq_rx_complete+0xb23/0x1010 [vmxnet3 56a84f9c97178c57a43a24ec073b45a9d6f01f3a]
vmxnet3_poll_rx_only+0x36/0xb0 [vmxnet3 56a84f9c97178c57a43a24ec073b45a9d6f01f3a]
__napi_poll+0x28/0x1b0
net_rx_action+0x2a4/0x380
__do_softirq+0xd1/0x2c8
__irq_exit_rcu+0xbb/0xf0
common_interrupt+0x86/0xa0
</IRQ>
<TASK>
asm_common_interrupt+0x26/0x40
RIP: 0010:apparmor_socket_post_create+0xb/0x200
Code: 08 48 85 ff 75 a1 eb b1 0f 1f 80 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 0f 1f 44 00 00 41 54 <55> 48 89 fd 53 45 85 c0 0f 84 b2 00 00 00 48 8b 1d 80 56 3f 02 48
RSP: 0018:ffffa92940ce7e50 EFLAGS: 00000286
RAX: ffffffffbc756440 RBX: 0000000000000000 RCX: 0000000000000001
RDX: 0000000000000003 RSI: 0000000000000002 RDI: ffff8b574eaab740
RBP: 0000000000000001 R08: 0000000000000000 R09: 0000000000000000
R10: ffff8b57444cec70 R11: 0000000000000000 R12: 0000000000000003
R13: 0000000000000002 R14: ffff8b574eaab740 R15: ffffffffbd8e4748
? __pfx_apparmor_socket_post_create+0x10/0x10
security_socket_post_create+0x4b/0x80
__sock_create+0x176/0x1f0
__sys_socket+0x89/0x100
__x64_sys_socket+0x17/0x20
do_syscall_64+0x5d/0x90
? do_syscall_64+0x6c/0x90
? do_syscall_64+0x6c/0x90
? do_syscall_64+0x6c/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
The BackWPup plugin for WordPress is vulnerable to Directory Traversal in versions up to, and including, 4.0.1 via the job-specific backup folder. This allows authenticated attackers to store backups in arbitrary folders on the server provided they can be written to by the server. Additionally, default settings will place an index.php and a .htaccess file into the chosen directory (unless already present) when the first backup job is run that are intended to prevent directory listing and file access. This means that an attacker could set the backup directory to the root of another site in a shared environment and thus disable that site.
In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Validate passed in drm syncobj handles in the performance extension
If userspace provides an unknown or invalid handle anywhere in the handle
array the rest of the driver will not handle that well.
Fix it by checking handle was looked up successfully or otherwise fail the
extension by jumping into the existing unwind.
(cherry picked from commit a546b7e4d73c23838d7e4d2c92882b3ca902d213)