Security Vulnerabilities
- CVEs Published In July 2025
In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: wcd9375: Fix double free of regulator supplies
Driver gets regulator supplies in probe path with
devm_regulator_bulk_get(), so should not call regulator_bulk_free() in
error and remove paths to avoid double free.
In the Linux kernel, the following vulnerability has been resolved:
perf: Fix sample vs do_exit()
Baisheng Gao reported an ARM64 crash, which Mark decoded as being a
synchronous external abort -- most likely due to trying to access
MMIO in bad ways.
The crash further shows perf trying to do a user stack sample while in
exit_mmap()'s tlb_finish_mmu() -- i.e. while tearing down the address
space it is trying to access.
It turns out that we stop perf after we tear down the userspace mm; a
receipie for disaster, since perf likes to access userspace for
various reasons.
Flip this order by moving up where we stop perf in do_exit().
Additionally, harden PERF_SAMPLE_CALLCHAIN and PERF_SAMPLE_STACK_USER
to abort when the current task does not have an mm (exit_mm() makes
sure to set current->mm = NULL; before commencing with the actual
teardown). Such that CPU wide events don't trip on this same problem.
In the Linux kernel, the following vulnerability has been resolved:
i2c: tegra: check msg length in SMBUS block read
For SMBUS block read, do not continue to read if the message length
passed from the device is '0' or greater than the maximum allowed bytes.
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Add basic validation for RAS header
If RAS header read from EEPROM is corrupted, it could result in trying
to allocate huge memory for reading the records. Add some validation to
header fields.
In the Linux kernel, the following vulnerability has been resolved:
video: screen_info: Relocate framebuffers behind PCI bridges
Apply PCI host-bridge window offsets to screen_info framebuffers. Fixes
invalid access to I/O memory.
Resources behind a PCI host bridge can be relocated by a certain offset
in the kernel's CPU address range used for I/O. The framebuffer memory
range stored in screen_info refers to the CPU addresses as seen during
boot (where the offset is 0). During boot up, firmware may assign a
different memory offset to the PCI host bridge and thereby relocating
the framebuffer address of the PCI graphics device as seen by the kernel.
The information in screen_info must be updated as well.
The helper pcibios_bus_to_resource() performs the relocation of the
screen_info's framebuffer resource (given in PCI bus addresses). The
result matches the I/O-memory resource of the PCI graphics device (given
in CPU addresses). As before, we store away the information necessary to
later update the information in screen_info itself.
Commit 78aa89d1dfba ("firmware/sysfb: Update screen_info for relocated
EFI framebuffers") added the code for updating screen_info. It is based
on similar functionality that pre-existed in efifb. Efifb uses a pointer
to the PCI resource, while the newer code does a memcpy of the region.
Hence efifb sees any updates to the PCI resource and avoids the issue.
v3:
- Only use struct pci_bus_region for PCI bus addresses (Bjorn)
- Clarify address semantics in commit messages and comments (Bjorn)
v2:
- Fixed tags (Takashi, Ivan)
- Updated information on efifb
In the Linux kernel, the following vulnerability has been resolved:
Input: ims-pcu - check record size in ims_pcu_flash_firmware()
The "len" variable comes from the firmware and we generally do
trust firmware, but it's always better to double check. If the "len"
is too large it could result in memory corruption when we do
"memcpy(fragment->data, rec->data, len);"
In the Linux kernel, the following vulnerability has been resolved:
bus: mhi: ep: Update read pointer only after buffer is written
Inside mhi_ep_ring_add_element, the read pointer (rd_offset) is updated
before the buffer is written, potentially causing race conditions where
the host sees an updated read pointer before the buffer is actually
written. Updating rd_offset prematurely can lead to the host accessing
an uninitialized or incomplete element, resulting in data corruption.
Invoke the buffer write before updating rd_offset to ensure the element
is fully written before signaling its availability.
In the Linux kernel, the following vulnerability has been resolved:
nfsd: nfsd4_spo_must_allow() must check this is a v4 compound request
If the request being processed is not a v4 compound request, then
examining the cstate can have undefined results.
This patch adds a check that the rpc procedure being executed
(rq_procinfo) is the NFSPROC4_COMPOUND procedure.
In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: do not ping device which has failed to load firmware
Syzkaller reports [1, 2] crashes caused by an attempts to ping
the device which has failed to load firmware. Since such a device
doesn't pass 'ieee80211_register_hw()', an internal workqueue
managed by 'ieee80211_queue_work()' is not yet created and an
attempt to queue work on it causes null-ptr-deref.
[1] https://syzkaller.appspot.com/bug?extid=9a4aec827829942045ff
[2] https://syzkaller.appspot.com/bug?extid=0d8afba53e8fb2633217
In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: pmf: Use device managed allocations
If setting up smart PC fails for any reason then this can lead to
a double free when unloading amd-pmf. This is because dev->buf was
freed but never set to NULL and is again freed in amd_pmf_remove().
To avoid subtle allocation bugs in failures leading to a double free
change all allocations into device managed allocations.