Security Vulnerabilities
- CVEs Published In July 2024
In the Linux kernel, the following vulnerability has been resolved:
net/sched: Fix UAF when resolving a clash
KASAN reports the following UAF:
BUG: KASAN: slab-use-after-free in tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct]
Read of size 1 at addr ffff888c07603600 by task handler130/6469
Call Trace:
<IRQ>
dump_stack_lvl+0x48/0x70
print_address_description.constprop.0+0x33/0x3d0
print_report+0xc0/0x2b0
kasan_report+0xd0/0x120
__asan_load1+0x6c/0x80
tcf_ct_flow_table_process_conn+0x12b/0x380 [act_ct]
tcf_ct_act+0x886/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
__irq_exit_rcu+0x82/0xc0
irq_exit_rcu+0xe/0x20
common_interrupt+0xa1/0xb0
</IRQ>
<TASK>
asm_common_interrupt+0x27/0x40
Allocated by task 6469:
kasan_save_stack+0x38/0x70
kasan_set_track+0x25/0x40
kasan_save_alloc_info+0x1e/0x40
__kasan_krealloc+0x133/0x190
krealloc+0xaa/0x130
nf_ct_ext_add+0xed/0x230 [nf_conntrack]
tcf_ct_act+0x1095/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
Freed by task 6469:
kasan_save_stack+0x38/0x70
kasan_set_track+0x25/0x40
kasan_save_free_info+0x2b/0x60
____kasan_slab_free+0x180/0x1f0
__kasan_slab_free+0x12/0x30
slab_free_freelist_hook+0xd2/0x1a0
__kmem_cache_free+0x1a2/0x2f0
kfree+0x78/0x120
nf_conntrack_free+0x74/0x130 [nf_conntrack]
nf_ct_destroy+0xb2/0x140 [nf_conntrack]
__nf_ct_resolve_clash+0x529/0x5d0 [nf_conntrack]
nf_ct_resolve_clash+0xf6/0x490 [nf_conntrack]
__nf_conntrack_confirm+0x2c6/0x770 [nf_conntrack]
tcf_ct_act+0x12ad/0x1350 [act_ct]
tcf_action_exec+0xf8/0x1f0
fl_classify+0x355/0x360 [cls_flower]
__tcf_classify+0x1fd/0x330
tcf_classify+0x21c/0x3c0
sch_handle_ingress.constprop.0+0x2c5/0x500
__netif_receive_skb_core.constprop.0+0xb25/0x1510
__netif_receive_skb_list_core+0x220/0x4c0
netif_receive_skb_list_internal+0x446/0x620
napi_complete_done+0x157/0x3d0
gro_cell_poll+0xcf/0x100
__napi_poll+0x65/0x310
net_rx_action+0x30c/0x5c0
__do_softirq+0x14f/0x491
The ct may be dropped if a clash has been resolved but is still passed to
the tcf_ct_flow_table_process_conn function for further usage. This issue
can be fixed by retrieving ct from skb again after confirming conntrack.
In the Linux kernel, the following vulnerability has been resolved:
udp: Set SOCK_RCU_FREE earlier in udp_lib_get_port().
syzkaller triggered the warning [0] in udp_v4_early_demux().
In udp_v[46]_early_demux() and sk_lookup(), we do not touch the refcount
of the looked-up sk and use sock_pfree() as skb->destructor, so we check
SOCK_RCU_FREE to ensure that the sk is safe to access during the RCU grace
period.
Currently, SOCK_RCU_FREE is flagged for a bound socket after being put
into the hash table. Moreover, the SOCK_RCU_FREE check is done too early
in udp_v[46]_early_demux() and sk_lookup(), so there could be a small race
window:
CPU1 CPU2
---- ----
udp_v4_early_demux() udp_lib_get_port()
| |- hlist_add_head_rcu()
|- sk = __udp4_lib_demux_lookup() |
|- DEBUG_NET_WARN_ON_ONCE(sk_is_refcounted(sk));
`- sock_set_flag(sk, SOCK_RCU_FREE)
We had the same bug in TCP and fixed it in commit 871019b22d1b ("net:
set SOCK_RCU_FREE before inserting socket into hashtable").
Let's apply the same fix for UDP.
[0]:
WARNING: CPU: 0 PID: 11198 at net/ipv4/udp.c:2599 udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599
Modules linked in:
CPU: 0 PID: 11198 Comm: syz-executor.1 Not tainted 6.9.0-g93bda33046e7 #13
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:udp_v4_early_demux+0x481/0xb70 net/ipv4/udp.c:2599
Code: c5 7a 15 fe bb 01 00 00 00 44 89 e9 31 ff d3 e3 81 e3 bf ef ff ff 89 de e8 2c 74 15 fe 85 db 0f 85 02 06 00 00 e8 9f 7a 15 fe <0f> 0b e8 98 7a 15 fe 49 8d 7e 60 e8 4f 39 2f fe 49 c7 46 60 20 52
RSP: 0018:ffffc9000ce3fa58 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffffffff8318c92c
RDX: ffff888036ccde00 RSI: ffffffff8318c2f1 RDI: 0000000000000001
RBP: ffff88805a2dd6e0 R08: 0000000000000001 R09: 0000000000000000
R10: 0000000000000000 R11: 0001ffffffffffff R12: ffff88805a2dd680
R13: 0000000000000007 R14: ffff88800923f900 R15: ffff88805456004e
FS: 00007fc449127640(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fc449126e38 CR3: 000000003de4b002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000600
PKRU: 55555554
Call Trace:
<TASK>
ip_rcv_finish_core.constprop.0+0xbdd/0xd20 net/ipv4/ip_input.c:349
ip_rcv_finish+0xda/0x150 net/ipv4/ip_input.c:447
NF_HOOK include/linux/netfilter.h:314 [inline]
NF_HOOK include/linux/netfilter.h:308 [inline]
ip_rcv+0x16c/0x180 net/ipv4/ip_input.c:569
__netif_receive_skb_one_core+0xb3/0xe0 net/core/dev.c:5624
__netif_receive_skb+0x21/0xd0 net/core/dev.c:5738
netif_receive_skb_internal net/core/dev.c:5824 [inline]
netif_receive_skb+0x271/0x300 net/core/dev.c:5884
tun_rx_batched drivers/net/tun.c:1549 [inline]
tun_get_user+0x24db/0x2c50 drivers/net/tun.c:2002
tun_chr_write_iter+0x107/0x1a0 drivers/net/tun.c:2048
new_sync_write fs/read_write.c:497 [inline]
vfs_write+0x76f/0x8d0 fs/read_write.c:590
ksys_write+0xbf/0x190 fs/read_write.c:643
__do_sys_write fs/read_write.c:655 [inline]
__se_sys_write fs/read_write.c:652 [inline]
__x64_sys_write+0x41/0x50 fs/read_write.c:652
x64_sys_call+0xe66/0x1990 arch/x86/include/generated/asm/syscalls_64.h:2
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x4b/0x110 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x4b/0x53
RIP: 0033:0x7fc44a68bc1f
Code: 89 54 24 18 48 89 74 24 10 89 7c 24 08 e8 e9 cf f5 ff 48 8b 54 24 18 48 8b 74 24 10 41 89 c0 8b 7c 24 08 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 31 44 89 c7 48 89 44 24 08 e8 3c d0 f5 ff 48
RSP: 002b:00007fc449126c90 EFLAGS: 00000293 ORIG_RAX: 0000000000000001
RAX: ffffffffffffffda RBX: 00000000004bc050 RCX: 00007fc44a68bc1f
R
---truncated---
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: prefer nft_chain_validate
nft_chain_validate already performs loop detection because a cycle will
result in a call stack overflow (ctx->level >= NFT_JUMP_STACK_SIZE).
It also follows maps via ->validate callback in nft_lookup, so there
appears no reason to iterate the maps again.
nf_tables_check_loops() and all its helper functions can be removed.
This improves ruleset load time significantly, from 23s down to 12s.
This also fixes a crash bug. Old loop detection code can result in
unbounded recursion:
BUG: TASK stack guard page was hit at ....
Oops: stack guard page: 0000 [#1] PREEMPT SMP KASAN
CPU: 4 PID: 1539 Comm: nft Not tainted 6.10.0-rc5+ #1
[..]
with a suitable ruleset during validation of register stores.
I can't see any actual reason to attempt to check for this from
nft_validate_register_store(), at this point the transaction is still in
progress, so we don't have a full picture of the rule graph.
For nf-next it might make sense to either remove it or make this depend
on table->validate_state in case we could catch an error earlier
(for improved error reporting to userspace).
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink_queue: drop bogus WARN_ON
Happens when rules get flushed/deleted while packet is out, so remove
this WARN_ON.
This WARN exists in one form or another since v4.14, no need to backport
this to older releases, hence use a more recent fixes tag.
In the Linux kernel, the following vulnerability has been resolved:
ppp: reject claimed-as-LCP but actually malformed packets
Since 'ppp_async_encode()' assumes valid LCP packets (with code
from 1 to 7 inclusive), add 'ppp_check_packet()' to ensure that
LCP packet has an actual body beyond PPP_LCP header bytes, and
reject claimed-as-LCP but actually malformed data otherwise.
In the Linux kernel, the following vulnerability has been resolved:
bpf: Defer work in bpf_timer_cancel_and_free
Currently, the same case as previous patch (two timer callbacks trying
to cancel each other) can be invoked through bpf_map_update_elem as
well, or more precisely, freeing map elements containing timers. Since
this relies on hrtimer_cancel as well, it is prone to the same deadlock
situation as the previous patch.
It would be sufficient to use hrtimer_try_to_cancel to fix this problem,
as the timer cannot be enqueued after async_cancel_and_free. Once
async_cancel_and_free has been done, the timer must be reinitialized
before it can be armed again. The callback running in parallel trying to
arm the timer will fail, and freeing bpf_hrtimer without waiting is
sufficient (given kfree_rcu), and bpf_timer_cb will return
HRTIMER_NORESTART, preventing the timer from being rearmed again.
However, there exists a UAF scenario where the callback arms the timer
before entering this function, such that if cancellation fails (due to
timer callback invoking this routine, or the target timer callback
running concurrently). In such a case, if the timer expiration is
significantly far in the future, the RCU grace period expiration
happening before it will free the bpf_hrtimer state and along with it
the struct hrtimer, that is enqueued.
Hence, it is clear cancellation needs to occur after
async_cancel_and_free, and yet it cannot be done inline due to deadlock
issues. We thus modify bpf_timer_cancel_and_free to defer work to the
global workqueue, adding a work_struct alongside rcu_head (both used at
_different_ points of time, so can share space).
Update existing code comments to reflect the new state of affairs.
In the Linux kernel, the following vulnerability has been resolved:
net: ethernet: lantiq_etop: fix double free in detach
The number of the currently released descriptor is never incremented
which results in the same skb being released multiple times.
In the Linux kernel, the following vulnerability has been resolved:
sched/deadline: Fix task_struct reference leak
During the execution of the following stress test with linux-rt:
stress-ng --cyclic 30 --timeout 30 --minimize --quiet
kmemleak frequently reported a memory leak concerning the task_struct:
unreferenced object 0xffff8881305b8000 (size 16136):
comm "stress-ng", pid 614, jiffies 4294883961 (age 286.412s)
object hex dump (first 32 bytes):
02 40 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .@..............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
debug hex dump (first 16 bytes):
53 09 00 00 00 00 00 00 00 00 00 00 00 00 00 00 S...............
backtrace:
[<00000000046b6790>] dup_task_struct+0x30/0x540
[<00000000c5ca0f0b>] copy_process+0x3d9/0x50e0
[<00000000ced59777>] kernel_clone+0xb0/0x770
[<00000000a50befdc>] __do_sys_clone+0xb6/0xf0
[<000000001dbf2008>] do_syscall_64+0x5d/0xf0
[<00000000552900ff>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
The issue occurs in start_dl_timer(), which increments the task_struct
reference count and sets a timer. The timer callback, dl_task_timer,
is supposed to decrement the reference count upon expiration. However,
if enqueue_task_dl() is called before the timer expires and cancels it,
the reference count is not decremented, leading to the leak.
This patch fixes the reference leak by ensuring the task_struct
reference count is properly decremented when the timer is canceled.
In the Linux kernel, the following vulnerability has been resolved:
misc: fastrpc: Fix memory leak in audio daemon attach operation
Audio PD daemon send the name as part of the init IOCTL call. This
name needs to be copied to kernel for which memory is allocated.
This memory is never freed which might result in memory leak. Free
the memory when it is not needed.
In the Linux kernel, the following vulnerability has been resolved:
mmc: davinci_mmc: Prevent transmitted data size from exceeding sgm's length
No check is done on the size of the data to be transmiited. This causes
a kernel panic when this size exceeds the sg_miter's length.
Limit the number of transmitted bytes to sgm->length.