Security Vulnerabilities
- CVEs Published In July 2024
In the Linux kernel, the following vulnerability has been resolved:
mm: prevent derefencing NULL ptr in pfn_section_valid()
Commit 5ec8e8ea8b77 ("mm/sparsemem: fix race in accessing
memory_section->usage") changed pfn_section_valid() to add a READ_ONCE()
call around "ms->usage" to fix a race with section_deactivate() where
ms->usage can be cleared. The READ_ONCE() call, by itself, is not enough
to prevent NULL pointer dereference. We need to check its value before
dereferencing it.
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Use strnlen() on name fields in V1 wmfw files
Use strnlen() instead of strlen() on the algorithm and coefficient name
string arrays in V1 wmfw files.
In V1 wmfw files the name is a NUL-terminated string in a fixed-size
array. cs_dsp should protect against overrunning the array if the NUL
terminator is missing.
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix slab-use-after-free in cachefiles_withdraw_cookie()
We got the following issue in our fault injection stress test:
==================================================================
BUG: KASAN: slab-use-after-free in cachefiles_withdraw_cookie+0x4d9/0x600
Read of size 8 at addr ffff888118efc000 by task kworker/u78:0/109
CPU: 13 PID: 109 Comm: kworker/u78:0 Not tainted 6.8.0-dirty #566
Call Trace:
<TASK>
kasan_report+0x93/0xc0
cachefiles_withdraw_cookie+0x4d9/0x600
fscache_cookie_state_machine+0x5c8/0x1230
fscache_cookie_worker+0x91/0x1c0
process_one_work+0x7fa/0x1800
[...]
Allocated by task 117:
kmalloc_trace+0x1b3/0x3c0
cachefiles_acquire_volume+0xf3/0x9c0
fscache_create_volume_work+0x97/0x150
process_one_work+0x7fa/0x1800
[...]
Freed by task 120301:
kfree+0xf1/0x2c0
cachefiles_withdraw_cache+0x3fa/0x920
cachefiles_put_unbind_pincount+0x1f6/0x250
cachefiles_daemon_release+0x13b/0x290
__fput+0x204/0xa00
task_work_run+0x139/0x230
do_exit+0x87a/0x29b0
[...]
==================================================================
Following is the process that triggers the issue:
p1 | p2
------------------------------------------------------------
fscache_begin_lookup
fscache_begin_volume_access
fscache_cache_is_live(fscache_cache)
cachefiles_daemon_release
cachefiles_put_unbind_pincount
cachefiles_daemon_unbind
cachefiles_withdraw_cache
fscache_withdraw_cache
fscache_set_cache_state(cache, FSCACHE_CACHE_IS_WITHDRAWN);
cachefiles_withdraw_objects(cache)
fscache_wait_for_objects(fscache)
atomic_read(&fscache_cache->object_count) == 0
fscache_perform_lookup
cachefiles_lookup_cookie
cachefiles_alloc_object
refcount_set(&object->ref, 1);
object->volume = volume
fscache_count_object(vcookie->cache);
atomic_inc(&fscache_cache->object_count)
cachefiles_withdraw_volumes
cachefiles_withdraw_volume
fscache_withdraw_volume
__cachefiles_free_volume
kfree(cachefiles_volume)
fscache_cookie_state_machine
cachefiles_withdraw_cookie
cache = object->volume->cache;
// cachefiles_volume UAF !!!
After setting FSCACHE_CACHE_IS_WITHDRAWN, wait for all the cookie lookups
to complete first, and then wait for fscache_cache->object_count == 0 to
avoid the cookie exiting after the volume has been freed and triggering
the above issue. Therefore call fscache_withdraw_volume() before calling
cachefiles_withdraw_objects().
This way, after setting FSCACHE_CACHE_IS_WITHDRAWN, only the following two
cases will occur:
1) fscache_begin_lookup fails in fscache_begin_volume_access().
2) fscache_withdraw_volume() will ensure that fscache_count_object() has
been executed before calling fscache_wait_for_objects().
In the Linux kernel, the following vulnerability has been resolved:
cachefiles: fix slab-use-after-free in fscache_withdraw_volume()
We got the following issue in our fault injection stress test:
==================================================================
BUG: KASAN: slab-use-after-free in fscache_withdraw_volume+0x2e1/0x370
Read of size 4 at addr ffff88810680be08 by task ondemand-04-dae/5798
CPU: 0 PID: 5798 Comm: ondemand-04-dae Not tainted 6.8.0-dirty #565
Call Trace:
kasan_check_range+0xf6/0x1b0
fscache_withdraw_volume+0x2e1/0x370
cachefiles_withdraw_volume+0x31/0x50
cachefiles_withdraw_cache+0x3ad/0x900
cachefiles_put_unbind_pincount+0x1f6/0x250
cachefiles_daemon_release+0x13b/0x290
__fput+0x204/0xa00
task_work_run+0x139/0x230
Allocated by task 5820:
__kmalloc+0x1df/0x4b0
fscache_alloc_volume+0x70/0x600
__fscache_acquire_volume+0x1c/0x610
erofs_fscache_register_volume+0x96/0x1a0
erofs_fscache_register_fs+0x49a/0x690
erofs_fc_fill_super+0x6c0/0xcc0
vfs_get_super+0xa9/0x140
vfs_get_tree+0x8e/0x300
do_new_mount+0x28c/0x580
[...]
Freed by task 5820:
kfree+0xf1/0x2c0
fscache_put_volume.part.0+0x5cb/0x9e0
erofs_fscache_unregister_fs+0x157/0x1b0
erofs_kill_sb+0xd9/0x1c0
deactivate_locked_super+0xa3/0x100
vfs_get_super+0x105/0x140
vfs_get_tree+0x8e/0x300
do_new_mount+0x28c/0x580
[...]
==================================================================
Following is the process that triggers the issue:
mount failed | daemon exit
------------------------------------------------------------
deactivate_locked_super cachefiles_daemon_release
erofs_kill_sb
erofs_fscache_unregister_fs
fscache_relinquish_volume
__fscache_relinquish_volume
fscache_put_volume(fscache_volume, fscache_volume_put_relinquish)
zero = __refcount_dec_and_test(&fscache_volume->ref, &ref);
cachefiles_put_unbind_pincount
cachefiles_daemon_unbind
cachefiles_withdraw_cache
cachefiles_withdraw_volumes
list_del_init(&volume->cache_link)
fscache_free_volume(fscache_volume)
cache->ops->free_volume
cachefiles_free_volume
list_del_init(&cachefiles_volume->cache_link);
kfree(fscache_volume)
cachefiles_withdraw_volume
fscache_withdraw_volume
fscache_volume->n_accesses
// fscache_volume UAF !!!
The fscache_volume in cache->volumes must not have been freed yet, but its
reference count may be 0. So use the new fscache_try_get_volume() helper
function try to get its reference count.
If the reference count of fscache_volume is 0, fscache_put_volume() is
freeing it, so wait for it to be removed from cache->volumes.
If its reference count is not 0, call cachefiles_withdraw_volume() with
reference count protection to avoid the above issue.
In the Linux kernel, the following vulnerability has been resolved:
hfsplus: fix uninit-value in copy_name
[syzbot reported]
BUG: KMSAN: uninit-value in sized_strscpy+0xc4/0x160
sized_strscpy+0xc4/0x160
copy_name+0x2af/0x320 fs/hfsplus/xattr.c:411
hfsplus_listxattr+0x11e9/0x1a50 fs/hfsplus/xattr.c:750
vfs_listxattr fs/xattr.c:493 [inline]
listxattr+0x1f3/0x6b0 fs/xattr.c:840
path_listxattr fs/xattr.c:864 [inline]
__do_sys_listxattr fs/xattr.c:876 [inline]
__se_sys_listxattr fs/xattr.c:873 [inline]
__x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873
x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Uninit was created at:
slab_post_alloc_hook mm/slub.c:3877 [inline]
slab_alloc_node mm/slub.c:3918 [inline]
kmalloc_trace+0x57b/0xbe0 mm/slub.c:4065
kmalloc include/linux/slab.h:628 [inline]
hfsplus_listxattr+0x4cc/0x1a50 fs/hfsplus/xattr.c:699
vfs_listxattr fs/xattr.c:493 [inline]
listxattr+0x1f3/0x6b0 fs/xattr.c:840
path_listxattr fs/xattr.c:864 [inline]
__do_sys_listxattr fs/xattr.c:876 [inline]
__se_sys_listxattr fs/xattr.c:873 [inline]
__x64_sys_listxattr+0x16b/0x2f0 fs/xattr.c:873
x64_sys_call+0x2ba0/0x3b50 arch/x86/include/generated/asm/syscalls_64.h:195
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcf/0x1e0 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
[Fix]
When allocating memory to strbuf, initialize memory to 0.
In the Linux kernel, the following vulnerability has been resolved:
USB: core: Fix duplicate endpoint bug by clearing reserved bits in the descriptor
Syzbot has identified a bug in usbcore (see the Closes: tag below)
caused by our assumption that the reserved bits in an endpoint
descriptor's bEndpointAddress field will always be 0. As a result of
the bug, the endpoint_is_duplicate() routine in config.c (and possibly
other routines as well) may believe that two descriptors are for
distinct endpoints, even though they have the same direction and
endpoint number. This can lead to confusion, including the bug
identified by syzbot (two descriptors with matching endpoint numbers
and directions, where one was interrupt and the other was bulk).
To fix the bug, we will clear the reserved bits in bEndpointAddress
when we parse the descriptor. (Note that both the USB-2.0 and USB-3.1
specs say these bits are "Reserved, reset to zero".) This requires us
to make a copy of the descriptor earlier in usb_parse_endpoint() and
use the copy instead of the original when checking for duplicates.
In the Linux kernel, the following vulnerability has been resolved:
net: ks8851: Fix deadlock with the SPI chip variant
When SMP is enabled and spinlocks are actually functional then there is
a deadlock with the 'statelock' spinlock between ks8851_start_xmit_spi
and ks8851_irq:
watchdog: BUG: soft lockup - CPU#0 stuck for 27s!
call trace:
queued_spin_lock_slowpath+0x100/0x284
do_raw_spin_lock+0x34/0x44
ks8851_start_xmit_spi+0x30/0xb8
ks8851_start_xmit+0x14/0x20
netdev_start_xmit+0x40/0x6c
dev_hard_start_xmit+0x6c/0xbc
sch_direct_xmit+0xa4/0x22c
__qdisc_run+0x138/0x3fc
qdisc_run+0x24/0x3c
net_tx_action+0xf8/0x130
handle_softirqs+0x1ac/0x1f0
__do_softirq+0x14/0x20
____do_softirq+0x10/0x1c
call_on_irq_stack+0x3c/0x58
do_softirq_own_stack+0x1c/0x28
__irq_exit_rcu+0x54/0x9c
irq_exit_rcu+0x10/0x1c
el1_interrupt+0x38/0x50
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x64/0x68
__netif_schedule+0x6c/0x80
netif_tx_wake_queue+0x38/0x48
ks8851_irq+0xb8/0x2c8
irq_thread_fn+0x2c/0x74
irq_thread+0x10c/0x1b0
kthread+0xc8/0xd8
ret_from_fork+0x10/0x20
This issue has not been identified earlier because tests were done on
a device with SMP disabled and so spinlocks were actually NOPs.
Now use spin_(un)lock_bh for TX queue related locking to avoid execution
of softirq work synchronously that would lead to a deadlock.
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda: fix null deref on system suspend entry
When system enters suspend with an active stream, SOF core
calls hw_params_upon_resume(). On Intel platforms with HDA DMA used
to manage the link DMA, this leads to call chain of
hda_dsp_set_hw_params_upon_resume()
-> hda_dsp_dais_suspend()
-> hda_dai_suspend()
-> hda_ipc4_post_trigger()
A bug is hit in hda_dai_suspend() as hda_link_dma_cleanup() is run first,
which clears hext_stream->link_substream, and then hda_ipc4_post_trigger()
is called with a NULL snd_pcm_substream pointer.
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Prevent buffer overrun when processing V2 alg headers
Check that all fields of a V2 algorithm header fit into the available
firmware data buffer.
The wmfw V2 format introduced variable-length strings in the algorithm
block header. This means the overall header length is variable, and the
position of most fields varies depending on the length of the string
fields. Each field must be checked to ensure that it does not overflow
the firmware data buffer.
As this ia bugfix patch, the fixes avoid making any significant change to
the existing code. This makes it easier to review and less likely to
introduce new bugs.
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Fix overflow checking of wmfw header
Fix the checking that firmware file buffer is large enough for the
wmfw header, to prevent overrunning the buffer.
The original code tested that the firmware data buffer contained
enough bytes for the sums of the size of the structs
wmfw_header + wmfw_adsp1_sizes + wmfw_footer
But wmfw_adsp1_sizes is only used on ADSP1 firmware. For ADSP2 and
Halo Core the equivalent struct is wmfw_adsp2_sizes, which is
4 bytes longer. So the length check didn't guarantee that there
are enough bytes in the firmware buffer for a header with
wmfw_adsp2_sizes.
This patch splits the length check into three separate parts. Each
of the wmfw_header, wmfw_adsp?_sizes and wmfw_footer are checked
separately before they are used.